This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that A is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isppw2 | ⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isppw | ⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃! 𝑞 ∈ ℙ 𝑞 ∥ 𝐴 ) ) | |
| 2 | reu6 | ⊢ ( ∃! 𝑞 ∈ ℙ 𝑞 ∥ 𝐴 ↔ ∃ 𝑝 ∈ ℙ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) | |
| 3 | equid | ⊢ 𝑝 = 𝑝 | |
| 4 | breq1 | ⊢ ( 𝑞 = 𝑝 → ( 𝑞 ∥ 𝐴 ↔ 𝑝 ∥ 𝐴 ) ) | |
| 5 | equequ1 | ⊢ ( 𝑞 = 𝑝 → ( 𝑞 = 𝑝 ↔ 𝑝 = 𝑝 ) ) | |
| 6 | 4 5 | bibi12d | ⊢ ( 𝑞 = 𝑝 → ( ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ↔ ( 𝑝 ∥ 𝐴 ↔ 𝑝 = 𝑝 ) ) ) |
| 7 | 6 | rspcva | ⊢ ( ( 𝑝 ∈ ℙ ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝑝 ∥ 𝐴 ↔ 𝑝 = 𝑝 ) ) |
| 8 | 7 | adantll | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝑝 ∥ 𝐴 ↔ 𝑝 = 𝑝 ) ) |
| 9 | 3 8 | mpbiri | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → 𝑝 ∥ 𝐴 ) |
| 10 | simplr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → 𝑝 ∈ ℙ ) | |
| 11 | simpll | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → 𝐴 ∈ ℕ ) | |
| 12 | pcelnn | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ 𝑝 ∥ 𝐴 ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ 𝑝 ∥ 𝐴 ) ) |
| 14 | 9 13 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ ) |
| 15 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → 𝑞 = 𝑝 ) | |
| 16 | 15 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐴 ) ) |
| 17 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → 𝑝 ∈ ℙ ) | |
| 18 | pccl | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) | |
| 19 | 18 | ancoms | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 21 | 20 | nn0zd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) |
| 22 | pcid | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) → ( 𝑝 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt 𝐴 ) ) | |
| 23 | 17 21 22 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑝 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt 𝐴 ) ) |
| 24 | 16 23 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑝 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 25 | 15 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 26 | 24 25 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 27 | simprr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) | |
| 28 | 27 | notbid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → ( ¬ 𝑞 ∥ 𝐴 ↔ ¬ 𝑞 = 𝑝 ) ) |
| 29 | 28 | biimpar | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ¬ 𝑞 ∥ 𝐴 ) |
| 30 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → 𝑞 ∈ ℙ ) | |
| 31 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → 𝐴 ∈ ℕ ) | |
| 32 | pceq0 | ⊢ ( ( 𝑞 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑞 pCnt 𝐴 ) = 0 ↔ ¬ 𝑞 ∥ 𝐴 ) ) | |
| 33 | 30 31 32 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( ( 𝑞 pCnt 𝐴 ) = 0 ↔ ¬ 𝑞 ∥ 𝐴 ) ) |
| 34 | 29 33 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = 0 ) |
| 35 | simprl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → 𝑞 ∈ ℙ ) | |
| 36 | simplr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → 𝑝 ∈ ℙ ) | |
| 37 | 19 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 38 | prmdvdsexpr | ⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) → ( 𝑞 ∥ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) → 𝑞 = 𝑝 ) ) | |
| 39 | 35 36 37 38 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → ( 𝑞 ∥ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) → 𝑞 = 𝑝 ) ) |
| 40 | 39 | con3dimp | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ¬ 𝑞 ∥ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) |
| 41 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 42 | 41 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℕ ) |
| 43 | 42 19 | nnexpcld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ ) |
| 44 | 43 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ ) |
| 45 | pceq0 | ⊢ ( ( 𝑞 ∈ ℙ ∧ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ ) → ( ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = 0 ↔ ¬ 𝑞 ∥ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) | |
| 46 | 30 44 45 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = 0 ↔ ¬ 𝑞 ∥ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 47 | 40 46 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = 0 ) |
| 48 | 34 47 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) ∧ ¬ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 49 | 26 48 | pm2.61dan | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑞 ∈ ℙ ∧ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 50 | 49 | expr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) → ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 51 | 50 | ralimdva | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 52 | 51 | imp | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 53 | nnnn0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) | |
| 54 | 53 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → 𝐴 ∈ ℕ0 ) |
| 55 | 43 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ ) |
| 56 | 55 | nnnn0d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ0 ) |
| 57 | pc11 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ0 ) → ( 𝐴 = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) ) | |
| 58 | 54 56 57 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ( 𝐴 = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝐴 ) = ( 𝑞 pCnt ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 59 | 52 58 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → 𝐴 = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) |
| 60 | oveq2 | ⊢ ( 𝑘 = ( 𝑝 pCnt 𝐴 ) → ( 𝑝 ↑ 𝑘 ) = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) | |
| 61 | 60 | rspceeqv | ⊢ ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ 𝐴 = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) → ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) |
| 62 | 14 59 61 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) → ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) |
| 63 | 62 | ex | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) → ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 64 | prmdvdsexpb | ⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) | |
| 65 | 64 | 3coml | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) |
| 66 | 65 | 3expa | ⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) |
| 67 | 66 | ralrimiva | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) |
| 68 | 67 | adantll | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) |
| 69 | breq2 | ⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( 𝑞 ∥ 𝐴 ↔ 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ) ) | |
| 70 | 69 | bibi1d | ⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ↔ ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) ) |
| 71 | 70 | ralbidv | ⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ ( 𝑝 ↑ 𝑘 ) ↔ 𝑞 = 𝑝 ) ) ) |
| 72 | 68 71 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) |
| 73 | 72 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ) ) |
| 74 | 63 73 | impbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ↔ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 75 | 74 | rexbidva | ⊢ ( 𝐴 ∈ ℕ → ( ∃ 𝑝 ∈ ℙ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝐴 ↔ 𝑞 = 𝑝 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 76 | 2 75 | bitrid | ⊢ ( 𝐴 ∈ ℕ → ( ∃! 𝑞 ∈ ℙ 𝑞 ∥ 𝐴 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 77 | 1 76 | bitrd | ⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |