This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that A is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isppw | ⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } | |
| 2 | 1 | vmaval | ⊢ ( 𝐴 ∈ ℕ → ( Λ ‘ 𝐴 ) = if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ) |
| 3 | 2 | neeq1d | ⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 ) ) |
| 4 | reuen1 | ⊢ ( ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) | |
| 5 | hash1 | ⊢ ( ♯ ‘ 1o ) = 1 | |
| 6 | 5 | eqeq2i | ⊢ ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = ( ♯ ‘ 1o ) ↔ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 ) |
| 7 | prmdvdsfi | ⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) | |
| 8 | 1onn | ⊢ 1o ∈ ω | |
| 9 | nnfi | ⊢ ( 1o ∈ ω → 1o ∈ Fin ) | |
| 10 | 8 9 | ax-mp | ⊢ 1o ∈ Fin |
| 11 | hashen | ⊢ ( ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ∧ 1o ∈ Fin ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = ( ♯ ‘ 1o ) ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) ) | |
| 12 | 7 10 11 | sylancl | ⊢ ( 𝐴 ∈ ℕ → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = ( ♯ ‘ 1o ) ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) ) |
| 13 | 6 12 | bitr3id | ⊢ ( 𝐴 ∈ ℕ → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) ) |
| 14 | 13 | biimpar | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 ) |
| 15 | 14 | iftrued | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) = ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) |
| 16 | simpr | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) | |
| 17 | en1b | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } = { ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } } ) | |
| 18 | 16 17 | sylib | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } = { ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } } ) |
| 19 | ssrab2 | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ ℙ | |
| 20 | 18 19 | eqsstrrdi | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → { ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } } ⊆ ℙ ) |
| 21 | 7 | uniexd | ⊢ ( 𝐴 ∈ ℕ → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ V ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ V ) |
| 23 | snssg | ⊢ ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ V → ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℙ ↔ { ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } } ⊆ ℙ ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℙ ↔ { ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } } ⊆ ℙ ) ) |
| 25 | 20 24 | mpbird | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℙ ) |
| 26 | prmuz2 | ⊢ ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℙ → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ( ℤ≥ ‘ 2 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ( ℤ≥ ‘ 2 ) ) |
| 28 | eluzelre | ⊢ ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ( ℤ≥ ‘ 2 ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℝ ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℝ ) |
| 30 | eluz2gt1 | ⊢ ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ( ℤ≥ ‘ 2 ) → 1 < ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) | |
| 31 | 27 30 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → 1 < ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) |
| 32 | 29 31 | rplogcld | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℝ+ ) |
| 33 | 32 | rpne0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ≠ 0 ) |
| 34 | 15 33 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 ) |
| 35 | 34 | ex | ⊢ ( 𝐴 ∈ ℕ → ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 ) ) |
| 36 | iffalse | ⊢ ( ¬ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) = 0 ) | |
| 37 | 36 | necon1ai | ⊢ ( if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 ) |
| 38 | 37 13 | imbitrid | ⊢ ( 𝐴 ∈ ℕ → ( if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) ) |
| 39 | 35 38 | impbid | ⊢ ( 𝐴 ∈ ℕ → ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ↔ if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 ) ) |
| 40 | 4 39 | bitrid | ⊢ ( 𝐴 ∈ ℕ → ( ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 ) ) |
| 41 | 3 40 | bitr4d | ⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ) ) |