This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that A is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isppw2 | |- ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isppw | |- ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E! q e. Prime q || A ) ) |
|
| 2 | reu6 | |- ( E! q e. Prime q || A <-> E. p e. Prime A. q e. Prime ( q || A <-> q = p ) ) |
|
| 3 | equid | |- p = p |
|
| 4 | breq1 | |- ( q = p -> ( q || A <-> p || A ) ) |
|
| 5 | equequ1 | |- ( q = p -> ( q = p <-> p = p ) ) |
|
| 6 | 4 5 | bibi12d | |- ( q = p -> ( ( q || A <-> q = p ) <-> ( p || A <-> p = p ) ) ) |
| 7 | 6 | rspcva | |- ( ( p e. Prime /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( p || A <-> p = p ) ) |
| 8 | 7 | adantll | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( p || A <-> p = p ) ) |
| 9 | 3 8 | mpbiri | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> p || A ) |
| 10 | simplr | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> p e. Prime ) |
|
| 11 | simpll | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> A e. NN ) |
|
| 12 | pcelnn | |- ( ( p e. Prime /\ A e. NN ) -> ( ( p pCnt A ) e. NN <-> p || A ) ) |
|
| 13 | 10 11 12 | syl2anc | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( ( p pCnt A ) e. NN <-> p || A ) ) |
| 14 | 9 13 | mpbird | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( p pCnt A ) e. NN ) |
| 15 | simpr | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> q = p ) |
|
| 16 | 15 | oveq1d | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( q pCnt A ) = ( p pCnt A ) ) |
| 17 | simpllr | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> p e. Prime ) |
|
| 18 | pccl | |- ( ( p e. Prime /\ A e. NN ) -> ( p pCnt A ) e. NN0 ) |
|
| 19 | 18 | ancoms | |- ( ( A e. NN /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
| 20 | 19 | ad2antrr | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( p pCnt A ) e. NN0 ) |
| 21 | 20 | nn0zd | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( p pCnt A ) e. ZZ ) |
| 22 | pcid | |- ( ( p e. Prime /\ ( p pCnt A ) e. ZZ ) -> ( p pCnt ( p ^ ( p pCnt A ) ) ) = ( p pCnt A ) ) |
|
| 23 | 17 21 22 | syl2anc | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( p pCnt ( p ^ ( p pCnt A ) ) ) = ( p pCnt A ) ) |
| 24 | 16 23 | eqtr4d | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( q pCnt A ) = ( p pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 25 | 15 | oveq1d | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( q pCnt ( p ^ ( p pCnt A ) ) ) = ( p pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 26 | 24 25 | eqtr4d | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ q = p ) -> ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 27 | simprr | |- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> ( q || A <-> q = p ) ) |
|
| 28 | 27 | notbid | |- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> ( -. q || A <-> -. q = p ) ) |
| 29 | 28 | biimpar | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> -. q || A ) |
| 30 | simplrl | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> q e. Prime ) |
|
| 31 | simplll | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> A e. NN ) |
|
| 32 | pceq0 | |- ( ( q e. Prime /\ A e. NN ) -> ( ( q pCnt A ) = 0 <-> -. q || A ) ) |
|
| 33 | 30 31 32 | syl2anc | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( ( q pCnt A ) = 0 <-> -. q || A ) ) |
| 34 | 29 33 | mpbird | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( q pCnt A ) = 0 ) |
| 35 | simprl | |- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> q e. Prime ) |
|
| 36 | simplr | |- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> p e. Prime ) |
|
| 37 | 19 | adantr | |- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> ( p pCnt A ) e. NN0 ) |
| 38 | prmdvdsexpr | |- ( ( q e. Prime /\ p e. Prime /\ ( p pCnt A ) e. NN0 ) -> ( q || ( p ^ ( p pCnt A ) ) -> q = p ) ) |
|
| 39 | 35 36 37 38 | syl3anc | |- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> ( q || ( p ^ ( p pCnt A ) ) -> q = p ) ) |
| 40 | 39 | con3dimp | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> -. q || ( p ^ ( p pCnt A ) ) ) |
| 41 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 42 | 41 | adantl | |- ( ( A e. NN /\ p e. Prime ) -> p e. NN ) |
| 43 | 42 19 | nnexpcld | |- ( ( A e. NN /\ p e. Prime ) -> ( p ^ ( p pCnt A ) ) e. NN ) |
| 44 | 43 | ad2antrr | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( p ^ ( p pCnt A ) ) e. NN ) |
| 45 | pceq0 | |- ( ( q e. Prime /\ ( p ^ ( p pCnt A ) ) e. NN ) -> ( ( q pCnt ( p ^ ( p pCnt A ) ) ) = 0 <-> -. q || ( p ^ ( p pCnt A ) ) ) ) |
|
| 46 | 30 44 45 | syl2anc | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( ( q pCnt ( p ^ ( p pCnt A ) ) ) = 0 <-> -. q || ( p ^ ( p pCnt A ) ) ) ) |
| 47 | 40 46 | mpbird | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( q pCnt ( p ^ ( p pCnt A ) ) ) = 0 ) |
| 48 | 34 47 | eqtr4d | |- ( ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) /\ -. q = p ) -> ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 49 | 26 48 | pm2.61dan | |- ( ( ( A e. NN /\ p e. Prime ) /\ ( q e. Prime /\ ( q || A <-> q = p ) ) ) -> ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 50 | 49 | expr | |- ( ( ( A e. NN /\ p e. Prime ) /\ q e. Prime ) -> ( ( q || A <-> q = p ) -> ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) ) |
| 51 | 50 | ralimdva | |- ( ( A e. NN /\ p e. Prime ) -> ( A. q e. Prime ( q || A <-> q = p ) -> A. q e. Prime ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) ) |
| 52 | 51 | imp | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> A. q e. Prime ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) |
| 53 | nnnn0 | |- ( A e. NN -> A e. NN0 ) |
|
| 54 | 53 | ad2antrr | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> A e. NN0 ) |
| 55 | 43 | adantr | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( p ^ ( p pCnt A ) ) e. NN ) |
| 56 | 55 | nnnn0d | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( p ^ ( p pCnt A ) ) e. NN0 ) |
| 57 | pc11 | |- ( ( A e. NN0 /\ ( p ^ ( p pCnt A ) ) e. NN0 ) -> ( A = ( p ^ ( p pCnt A ) ) <-> A. q e. Prime ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) ) |
|
| 58 | 54 56 57 | syl2anc | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> ( A = ( p ^ ( p pCnt A ) ) <-> A. q e. Prime ( q pCnt A ) = ( q pCnt ( p ^ ( p pCnt A ) ) ) ) ) |
| 59 | 52 58 | mpbird | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> A = ( p ^ ( p pCnt A ) ) ) |
| 60 | oveq2 | |- ( k = ( p pCnt A ) -> ( p ^ k ) = ( p ^ ( p pCnt A ) ) ) |
|
| 61 | 60 | rspceeqv | |- ( ( ( p pCnt A ) e. NN /\ A = ( p ^ ( p pCnt A ) ) ) -> E. k e. NN A = ( p ^ k ) ) |
| 62 | 14 59 61 | syl2anc | |- ( ( ( A e. NN /\ p e. Prime ) /\ A. q e. Prime ( q || A <-> q = p ) ) -> E. k e. NN A = ( p ^ k ) ) |
| 63 | 62 | ex | |- ( ( A e. NN /\ p e. Prime ) -> ( A. q e. Prime ( q || A <-> q = p ) -> E. k e. NN A = ( p ^ k ) ) ) |
| 64 | prmdvdsexpb | |- ( ( q e. Prime /\ p e. Prime /\ k e. NN ) -> ( q || ( p ^ k ) <-> q = p ) ) |
|
| 65 | 64 | 3coml | |- ( ( p e. Prime /\ k e. NN /\ q e. Prime ) -> ( q || ( p ^ k ) <-> q = p ) ) |
| 66 | 65 | 3expa | |- ( ( ( p e. Prime /\ k e. NN ) /\ q e. Prime ) -> ( q || ( p ^ k ) <-> q = p ) ) |
| 67 | 66 | ralrimiva | |- ( ( p e. Prime /\ k e. NN ) -> A. q e. Prime ( q || ( p ^ k ) <-> q = p ) ) |
| 68 | 67 | adantll | |- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> A. q e. Prime ( q || ( p ^ k ) <-> q = p ) ) |
| 69 | breq2 | |- ( A = ( p ^ k ) -> ( q || A <-> q || ( p ^ k ) ) ) |
|
| 70 | 69 | bibi1d | |- ( A = ( p ^ k ) -> ( ( q || A <-> q = p ) <-> ( q || ( p ^ k ) <-> q = p ) ) ) |
| 71 | 70 | ralbidv | |- ( A = ( p ^ k ) -> ( A. q e. Prime ( q || A <-> q = p ) <-> A. q e. Prime ( q || ( p ^ k ) <-> q = p ) ) ) |
| 72 | 68 71 | syl5ibrcom | |- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( A = ( p ^ k ) -> A. q e. Prime ( q || A <-> q = p ) ) ) |
| 73 | 72 | rexlimdva | |- ( ( A e. NN /\ p e. Prime ) -> ( E. k e. NN A = ( p ^ k ) -> A. q e. Prime ( q || A <-> q = p ) ) ) |
| 74 | 63 73 | impbid | |- ( ( A e. NN /\ p e. Prime ) -> ( A. q e. Prime ( q || A <-> q = p ) <-> E. k e. NN A = ( p ^ k ) ) ) |
| 75 | 74 | rexbidva | |- ( A e. NN -> ( E. p e. Prime A. q e. Prime ( q || A <-> q = p ) <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |
| 76 | 2 75 | bitrid | |- ( A e. NN -> ( E! q e. Prime q || A <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |
| 77 | 1 76 | bitrd | |- ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |