This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vmappw | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( Λ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( log ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 2 | nnnn0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) | |
| 3 | nnexpcl | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
| 5 | eqid | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } | |
| 6 | 5 | vmaval | ⊢ ( ( 𝑃 ↑ 𝐾 ) ∈ ℕ → ( Λ ‘ ( 𝑃 ↑ 𝐾 ) ) = if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) , 0 ) ) |
| 7 | 4 6 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( Λ ‘ ( 𝑃 ↑ 𝐾 ) ) = if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) , 0 ) ) |
| 8 | df-rab | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = { 𝑝 ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) } | |
| 9 | prmdvdsexpb | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ↔ 𝑝 = 𝑃 ) ) | |
| 10 | 9 | biimpd | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) → 𝑝 = 𝑃 ) ) |
| 11 | 10 | 3coml | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) → 𝑝 = 𝑃 ) ) |
| 12 | 11 | 3expa | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) → 𝑝 = 𝑃 ) ) |
| 13 | 12 | expimpd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) → 𝑝 = 𝑃 ) ) |
| 14 | simpl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∈ ℙ ) | |
| 15 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 16 | iddvdsexp | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) | |
| 17 | 15 16 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) |
| 18 | 14 17 | jca | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) ) |
| 19 | eleq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ ) ) | |
| 20 | breq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ↔ 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) ) | |
| 21 | 19 20 | anbi12d | ⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) ) ) |
| 22 | 18 21 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑝 = 𝑃 → ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ) ) |
| 23 | 13 22 | impbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ↔ 𝑝 = 𝑃 ) ) |
| 24 | velsn | ⊢ ( 𝑝 ∈ { 𝑃 } ↔ 𝑝 = 𝑃 ) | |
| 25 | 23 24 | bitr4di | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ↔ 𝑝 ∈ { 𝑃 } ) ) |
| 26 | 25 | eqabcdv | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → { 𝑝 ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) } = { 𝑃 } ) |
| 27 | 8 26 | eqtrid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = { 𝑃 } ) |
| 28 | 27 | fveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = ( ♯ ‘ { 𝑃 } ) ) |
| 29 | hashsng | ⊢ ( 𝑃 ∈ ℙ → ( ♯ ‘ { 𝑃 } ) = 1 ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑃 } ) = 1 ) |
| 31 | 28 30 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 ) |
| 32 | 31 | iftrued | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) , 0 ) = ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) ) |
| 33 | 27 | unieqd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = ∪ { 𝑃 } ) |
| 34 | unisng | ⊢ ( 𝑃 ∈ ℙ → ∪ { 𝑃 } = 𝑃 ) | |
| 35 | 34 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∪ { 𝑃 } = 𝑃 ) |
| 36 | 33 35 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = 𝑃 ) |
| 37 | 36 | fveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = ( log ‘ 𝑃 ) ) |
| 38 | 7 32 37 | 3eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( Λ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( log ‘ 𝑃 ) ) |