This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphisms preserve minimal elements. Note that (`' R " { D } ) ` is Takeuti and Zaring's idiom for the initial segment { x | x R D } . Proposition 6.31(1) of TakeutiZaring p. 33. (Contributed by NM, 19-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isomin | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 | ⊢ ( ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 2 | elima | ⊢ ( 𝑦 ∈ ( 𝐻 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐻 𝑦 ) |
| 4 | ssel | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) ) | |
| 5 | isof1o | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 6 | f1ofn | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Fn 𝐴 ) | |
| 7 | fnbrfvb | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) | |
| 8 | 7 | ex | ⊢ ( 𝐻 Fn 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) ) |
| 9 | 5 6 8 | 3syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) ) |
| 10 | 4 9 | syl9r | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) ) ) |
| 11 | 10 | imp31 | ⊢ ( ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) |
| 12 | 11 | rexbidva | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐶 ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐻 𝑦 ) ) |
| 13 | 3 12 | bitr4id | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝐻 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
| 14 | fvex | ⊢ ( 𝐻 ‘ 𝐷 ) ∈ V | |
| 15 | 2 | eliniseg | ⊢ ( ( 𝐻 ‘ 𝐷 ) ∈ V → ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| 16 | 14 15 | mp1i | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| 17 | 13 16 | anbi12d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑦 ∈ ( 𝐻 “ 𝐶 ) ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( ∃ 𝑥 ∈ 𝐶 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
| 18 | elin | ⊢ ( 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( 𝑦 ∈ ( 𝐻 “ 𝐶 ) ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) | |
| 19 | r19.41v | ⊢ ( ∃ 𝑥 ∈ 𝐶 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ↔ ( ∃ 𝑥 ∈ 𝐶 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) | |
| 20 | 17 18 19 | 3bitr4g | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ∃ 𝑥 ∈ 𝐶 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
| 21 | 20 | adantrr | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ∃ 𝑥 ∈ 𝐶 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
| 22 | breq1 | ⊢ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) | |
| 23 | 22 | biimpar | ⊢ ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) |
| 24 | vex | ⊢ 𝑥 ∈ V | |
| 25 | 24 | eliniseg | ⊢ ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) ) |
| 26 | 25 | ad2antll | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) ) |
| 27 | isorel | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) | |
| 28 | 26 27 | bitrd | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| 29 | 23 28 | imbitrrid | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
| 30 | 29 | exp32 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐷 ∈ 𝐴 → ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) ) ) |
| 31 | 4 30 | syl9r | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → ( 𝐷 ∈ 𝐴 → ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) ) ) ) |
| 32 | 31 | com34 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 → ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) ) ) ) |
| 33 | 32 | imp32 | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) ) |
| 34 | 33 | reximdvai | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∃ 𝑥 ∈ 𝐶 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → ∃ 𝑥 ∈ 𝐶 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
| 35 | 21 34 | sylbid | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) → ∃ 𝑥 ∈ 𝐶 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
| 36 | elin | ⊢ ( 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) | |
| 37 | 36 | exbii | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
| 38 | neq0 | ⊢ ( ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ) | |
| 39 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐶 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) | |
| 40 | 37 38 39 | 3bitr4i | ⊢ ( ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ↔ ∃ 𝑥 ∈ 𝐶 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) |
| 41 | 35 40 | imbitrrdi | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) → ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ) ) |
| 42 | 41 | exlimdv | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∃ 𝑦 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) → ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ) ) |
| 43 | 1 42 | biimtrid | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ → ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ) ) |
| 44 | 43 | con4d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ → ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
| 45 | 5 6 | syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Fn 𝐴 ) |
| 46 | fnfvima | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) | |
| 47 | 46 | 3expia | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝐶 → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
| 48 | 47 | adantrr | ⊢ ( ( 𝐻 Fn 𝐴 ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
| 49 | 45 48 | sylan | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
| 50 | 49 | adantrd | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
| 51 | 27 | biimpd | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝐷 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| 52 | fvex | ⊢ ( 𝐻 ‘ 𝑥 ) ∈ V | |
| 53 | 52 | eliniseg | ⊢ ( ( 𝐻 ‘ 𝐷 ) ∈ V → ( ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| 54 | 14 53 | ax-mp | ⊢ ( ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) |
| 55 | 51 54 | imbitrrdi | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝐷 → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
| 56 | 26 55 | sylbid | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
| 57 | 56 | exp32 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) ) |
| 58 | 4 57 | syl9r | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) ) ) |
| 59 | 58 | com34 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) ) ) |
| 60 | 59 | imp32 | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) |
| 61 | 60 | impd | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
| 62 | 50 61 | jcad | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ∧ ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) |
| 63 | elin | ⊢ ( ( 𝐻 ‘ 𝑥 ) ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ∧ ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) | |
| 64 | 62 36 63 | 3imtr4g | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) |
| 65 | n0i | ⊢ ( ( 𝐻 ‘ 𝑥 ) ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) | |
| 66 | 64 65 | syl6 | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
| 67 | 66 | exlimdv | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∃ 𝑥 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
| 68 | 38 67 | biimtrid | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
| 69 | 44 68 | impcon4bid | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |