This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphisms preserve minimal elements. Note that (`' R " { D } ) ` is Takeuti and Zaring's idiom for the initial segment { x | x R D } . Proposition 6.31(1) of TakeutiZaring p. 33. (Contributed by NM, 19-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isomin | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( C i^i ( `' R " { D } ) ) = (/) <-> ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 | |- ( -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) <-> E. y y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) ) |
|
| 2 | vex | |- y e. _V |
|
| 3 | 2 | elima | |- ( y e. ( H " C ) <-> E. x e. C x H y ) |
| 4 | ssel | |- ( C C_ A -> ( x e. C -> x e. A ) ) |
|
| 5 | isof1o | |- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 6 | f1ofn | |- ( H : A -1-1-onto-> B -> H Fn A ) |
|
| 7 | fnbrfvb | |- ( ( H Fn A /\ x e. A ) -> ( ( H ` x ) = y <-> x H y ) ) |
|
| 8 | 7 | ex | |- ( H Fn A -> ( x e. A -> ( ( H ` x ) = y <-> x H y ) ) ) |
| 9 | 5 6 8 | 3syl | |- ( H Isom R , S ( A , B ) -> ( x e. A -> ( ( H ` x ) = y <-> x H y ) ) ) |
| 10 | 4 9 | syl9r | |- ( H Isom R , S ( A , B ) -> ( C C_ A -> ( x e. C -> ( ( H ` x ) = y <-> x H y ) ) ) ) |
| 11 | 10 | imp31 | |- ( ( ( H Isom R , S ( A , B ) /\ C C_ A ) /\ x e. C ) -> ( ( H ` x ) = y <-> x H y ) ) |
| 12 | 11 | rexbidva | |- ( ( H Isom R , S ( A , B ) /\ C C_ A ) -> ( E. x e. C ( H ` x ) = y <-> E. x e. C x H y ) ) |
| 13 | 3 12 | bitr4id | |- ( ( H Isom R , S ( A , B ) /\ C C_ A ) -> ( y e. ( H " C ) <-> E. x e. C ( H ` x ) = y ) ) |
| 14 | fvex | |- ( H ` D ) e. _V |
|
| 15 | 2 | eliniseg | |- ( ( H ` D ) e. _V -> ( y e. ( `' S " { ( H ` D ) } ) <-> y S ( H ` D ) ) ) |
| 16 | 14 15 | mp1i | |- ( ( H Isom R , S ( A , B ) /\ C C_ A ) -> ( y e. ( `' S " { ( H ` D ) } ) <-> y S ( H ` D ) ) ) |
| 17 | 13 16 | anbi12d | |- ( ( H Isom R , S ( A , B ) /\ C C_ A ) -> ( ( y e. ( H " C ) /\ y e. ( `' S " { ( H ` D ) } ) ) <-> ( E. x e. C ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
| 18 | elin | |- ( y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) <-> ( y e. ( H " C ) /\ y e. ( `' S " { ( H ` D ) } ) ) ) |
|
| 19 | r19.41v | |- ( E. x e. C ( ( H ` x ) = y /\ y S ( H ` D ) ) <-> ( E. x e. C ( H ` x ) = y /\ y S ( H ` D ) ) ) |
|
| 20 | 17 18 19 | 3bitr4g | |- ( ( H Isom R , S ( A , B ) /\ C C_ A ) -> ( y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) <-> E. x e. C ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
| 21 | 20 | adantrr | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) <-> E. x e. C ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
| 22 | breq1 | |- ( ( H ` x ) = y -> ( ( H ` x ) S ( H ` D ) <-> y S ( H ` D ) ) ) |
|
| 23 | 22 | biimpar | |- ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> ( H ` x ) S ( H ` D ) ) |
| 24 | vex | |- x e. _V |
|
| 25 | 24 | eliniseg | |- ( D e. A -> ( x e. ( `' R " { D } ) <-> x R D ) ) |
| 26 | 25 | ad2antll | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x e. ( `' R " { D } ) <-> x R D ) ) |
| 27 | isorel | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x R D <-> ( H ` x ) S ( H ` D ) ) ) |
|
| 28 | 26 27 | bitrd | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x e. ( `' R " { D } ) <-> ( H ` x ) S ( H ` D ) ) ) |
| 29 | 23 28 | imbitrrid | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> x e. ( `' R " { D } ) ) ) |
| 30 | 29 | exp32 | |- ( H Isom R , S ( A , B ) -> ( x e. A -> ( D e. A -> ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> x e. ( `' R " { D } ) ) ) ) ) |
| 31 | 4 30 | syl9r | |- ( H Isom R , S ( A , B ) -> ( C C_ A -> ( x e. C -> ( D e. A -> ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> x e. ( `' R " { D } ) ) ) ) ) ) |
| 32 | 31 | com34 | |- ( H Isom R , S ( A , B ) -> ( C C_ A -> ( D e. A -> ( x e. C -> ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> x e. ( `' R " { D } ) ) ) ) ) ) |
| 33 | 32 | imp32 | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> x e. ( `' R " { D } ) ) ) ) |
| 34 | 33 | reximdvai | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( E. x e. C ( ( H ` x ) = y /\ y S ( H ` D ) ) -> E. x e. C x e. ( `' R " { D } ) ) ) |
| 35 | 21 34 | sylbid | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) -> E. x e. C x e. ( `' R " { D } ) ) ) |
| 36 | elin | |- ( x e. ( C i^i ( `' R " { D } ) ) <-> ( x e. C /\ x e. ( `' R " { D } ) ) ) |
|
| 37 | 36 | exbii | |- ( E. x x e. ( C i^i ( `' R " { D } ) ) <-> E. x ( x e. C /\ x e. ( `' R " { D } ) ) ) |
| 38 | neq0 | |- ( -. ( C i^i ( `' R " { D } ) ) = (/) <-> E. x x e. ( C i^i ( `' R " { D } ) ) ) |
|
| 39 | df-rex | |- ( E. x e. C x e. ( `' R " { D } ) <-> E. x ( x e. C /\ x e. ( `' R " { D } ) ) ) |
|
| 40 | 37 38 39 | 3bitr4i | |- ( -. ( C i^i ( `' R " { D } ) ) = (/) <-> E. x e. C x e. ( `' R " { D } ) ) |
| 41 | 35 40 | imbitrrdi | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) -> -. ( C i^i ( `' R " { D } ) ) = (/) ) ) |
| 42 | 41 | exlimdv | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( E. y y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) -> -. ( C i^i ( `' R " { D } ) ) = (/) ) ) |
| 43 | 1 42 | biimtrid | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) -> -. ( C i^i ( `' R " { D } ) ) = (/) ) ) |
| 44 | 43 | con4d | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( C i^i ( `' R " { D } ) ) = (/) -> ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
| 45 | 5 6 | syl | |- ( H Isom R , S ( A , B ) -> H Fn A ) |
| 46 | fnfvima | |- ( ( H Fn A /\ C C_ A /\ x e. C ) -> ( H ` x ) e. ( H " C ) ) |
|
| 47 | 46 | 3expia | |- ( ( H Fn A /\ C C_ A ) -> ( x e. C -> ( H ` x ) e. ( H " C ) ) ) |
| 48 | 47 | adantrr | |- ( ( H Fn A /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( H ` x ) e. ( H " C ) ) ) |
| 49 | 45 48 | sylan | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( H ` x ) e. ( H " C ) ) ) |
| 50 | 49 | adantrd | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( x e. C /\ x e. ( `' R " { D } ) ) -> ( H ` x ) e. ( H " C ) ) ) |
| 51 | 27 | biimpd | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x R D -> ( H ` x ) S ( H ` D ) ) ) |
| 52 | fvex | |- ( H ` x ) e. _V |
|
| 53 | 52 | eliniseg | |- ( ( H ` D ) e. _V -> ( ( H ` x ) e. ( `' S " { ( H ` D ) } ) <-> ( H ` x ) S ( H ` D ) ) ) |
| 54 | 14 53 | ax-mp | |- ( ( H ` x ) e. ( `' S " { ( H ` D ) } ) <-> ( H ` x ) S ( H ` D ) ) |
| 55 | 51 54 | imbitrrdi | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x R D -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
| 56 | 26 55 | sylbid | |- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
| 57 | 56 | exp32 | |- ( H Isom R , S ( A , B ) -> ( x e. A -> ( D e. A -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) ) |
| 58 | 4 57 | syl9r | |- ( H Isom R , S ( A , B ) -> ( C C_ A -> ( x e. C -> ( D e. A -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) ) ) |
| 59 | 58 | com34 | |- ( H Isom R , S ( A , B ) -> ( C C_ A -> ( D e. A -> ( x e. C -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) ) ) |
| 60 | 59 | imp32 | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) |
| 61 | 60 | impd | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( x e. C /\ x e. ( `' R " { D } ) ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
| 62 | 50 61 | jcad | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( x e. C /\ x e. ( `' R " { D } ) ) -> ( ( H ` x ) e. ( H " C ) /\ ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) |
| 63 | elin | |- ( ( H ` x ) e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) <-> ( ( H ` x ) e. ( H " C ) /\ ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
|
| 64 | 62 36 63 | 3imtr4g | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. ( C i^i ( `' R " { D } ) ) -> ( H ` x ) e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) ) ) |
| 65 | n0i | |- ( ( H ` x ) e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) |
|
| 66 | 64 65 | syl6 | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. ( C i^i ( `' R " { D } ) ) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
| 67 | 66 | exlimdv | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( E. x x e. ( C i^i ( `' R " { D } ) ) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
| 68 | 38 67 | biimtrid | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( -. ( C i^i ( `' R " { D } ) ) = (/) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
| 69 | 44 68 | impcon4bid | |- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( C i^i ( `' R " { D } ) ) = (/) <-> ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |