This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010) (Proof shortened by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isnrm2 | ⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrmtop | ⊢ ( 𝐽 ∈ Nrm → 𝐽 ∈ Top ) | |
| 2 | nrmsep2 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑐 ∩ 𝑑 ) = ∅ ) ) → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) | |
| 3 | 2 | 3exp2 | ⊢ ( 𝐽 ∈ Nrm → ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑑 ∈ ( Clsd ‘ 𝐽 ) → ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) ) ) |
| 4 | 3 | impd | ⊢ ( 𝐽 ∈ Nrm → ( ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) ) |
| 5 | 4 | ralrimivv | ⊢ ( 𝐽 ∈ Nrm → ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) |
| 6 | 1 5 | jca | ⊢ ( 𝐽 ∈ Nrm → ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) ) |
| 7 | simpl | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) → 𝐽 ∈ Top ) | |
| 8 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 11 | ineq2 | ⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( 𝑐 ∩ 𝑑 ) = ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) ) | |
| 12 | 11 | eqeq1d | ⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( 𝑐 ∩ 𝑑 ) = ∅ ↔ ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) |
| 13 | ineq2 | ⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) |
| 15 | 14 | anbi2d | ⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ↔ ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ) |
| 16 | 15 | rexbidv | ⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ↔ ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ) |
| 17 | 12 16 | imbi12d | ⊢ ( 𝑑 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ↔ ( ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ) ) |
| 18 | 17 | rspcv | ⊢ ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) → ( ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ( ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ) ) |
| 19 | 10 18 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ( ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ) ) |
| 20 | inssdif0 | ⊢ ( ( 𝑐 ∩ ∪ 𝐽 ) ⊆ 𝑥 ↔ ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) | |
| 21 | 8 | cldss | ⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → 𝑐 ⊆ ∪ 𝐽 ) |
| 22 | 21 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑐 ⊆ ∪ 𝐽 ) |
| 23 | dfss2 | ⊢ ( 𝑐 ⊆ ∪ 𝐽 ↔ ( 𝑐 ∩ ∪ 𝐽 ) = 𝑐 ) | |
| 24 | 22 23 | sylib | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑐 ∩ ∪ 𝐽 ) = 𝑐 ) |
| 25 | 24 | sseq1d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑐 ∩ ∪ 𝐽 ) ⊆ 𝑥 ↔ 𝑐 ⊆ 𝑥 ) ) |
| 26 | 20 25 | bitr3id | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ↔ 𝑐 ⊆ 𝑥 ) ) |
| 27 | inssdif0 | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ∪ 𝐽 ) ⊆ 𝑥 ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) | |
| 28 | simpll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top ) | |
| 29 | elssuni | ⊢ ( 𝑜 ∈ 𝐽 → 𝑜 ⊆ ∪ 𝐽 ) | |
| 30 | 8 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ ∪ 𝐽 ) |
| 31 | 28 29 30 | syl2an | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ ∪ 𝐽 ) |
| 32 | dfss2 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ ∪ 𝐽 ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ∪ 𝐽 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | |
| 33 | 31 32 | sylib | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ∪ 𝐽 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) |
| 34 | 33 | sseq1d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ∪ 𝐽 ) ⊆ 𝑥 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) |
| 35 | 27 34 | bitr3id | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) |
| 36 | 35 | anbi2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ↔ ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
| 37 | 36 | rexbidva | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ↔ ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
| 38 | 26 37 | imbi12d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( 𝑐 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ ) ) ↔ ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) ) |
| 39 | 19 38 | sylibd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) ) |
| 40 | 39 | ralimdva | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) ) |
| 41 | elin | ⊢ ( 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ↔ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ∈ 𝒫 𝑥 ) ) | |
| 42 | velpw | ⊢ ( 𝑐 ∈ 𝒫 𝑥 ↔ 𝑐 ⊆ 𝑥 ) | |
| 43 | 42 | anbi2i | ⊢ ( ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ∈ 𝒫 𝑥 ) ↔ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ⊆ 𝑥 ) ) |
| 44 | 41 43 | bitri | ⊢ ( 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ↔ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ⊆ 𝑥 ) ) |
| 45 | 44 | imbi1i | ⊢ ( ( 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ↔ ( ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ⊆ 𝑥 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
| 46 | impexp | ⊢ ( ( ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑐 ⊆ 𝑥 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ↔ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) ) | |
| 47 | 45 46 | bitri | ⊢ ( ( 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ↔ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) ) |
| 48 | 47 | ralbii2 | ⊢ ( ∀ 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ↔ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ( 𝑐 ⊆ 𝑥 → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
| 49 | 40 48 | imbitrrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ∀ 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
| 50 | 49 | ralrimdva | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) → ∀ 𝑥 ∈ 𝐽 ∀ 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) |
| 51 | 50 | imp | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) → ∀ 𝑥 ∈ 𝐽 ∀ 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) |
| 52 | isnrm | ⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑐 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ⊆ 𝑥 ) ) ) | |
| 53 | 7 51 52 | sylanbrc | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) → 𝐽 ∈ Nrm ) |
| 54 | 6 53 | impbii | ⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑜 ∈ 𝐽 ( 𝑐 ⊆ 𝑜 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ∩ 𝑑 ) = ∅ ) ) ) ) |