This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isnrm3 | ⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrmtop | ⊢ ( 𝐽 ∈ Nrm → 𝐽 ∈ Top ) | |
| 2 | nrmsep | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑐 ∩ 𝑑 ) = ∅ ) ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) | |
| 3 | 2 | 3exp2 | ⊢ ( 𝐽 ∈ Nrm → ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑑 ∈ ( Clsd ‘ 𝐽 ) → ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) ) |
| 4 | 3 | impd | ⊢ ( 𝐽 ∈ Nrm → ( ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) |
| 5 | 4 | ralrimivv | ⊢ ( 𝐽 ∈ Nrm → ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |
| 6 | 1 5 | jca | ⊢ ( 𝐽 ∈ Nrm → ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) |
| 7 | simpl | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) → 𝐽 ∈ Top ) | |
| 8 | simpr1 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑐 ⊆ 𝑥 ) | |
| 9 | simpr2 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑑 ⊆ 𝑦 ) | |
| 10 | sslin | ⊢ ( 𝑑 ⊆ 𝑦 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑦 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑦 ) ) |
| 12 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | 12 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 14 | 13 | ad4ant13 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( ∪ 𝐽 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 15 | simpr3 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) | |
| 16 | simpllr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑥 ∈ 𝐽 ) | |
| 17 | elssuni | ⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽 ) | |
| 18 | reldisj | ⊢ ( 𝑥 ⊆ ∪ 𝐽 → ( ( 𝑥 ∩ 𝑦 ) = ∅ ↔ 𝑥 ⊆ ( ∪ 𝐽 ∖ 𝑦 ) ) ) | |
| 19 | 16 17 18 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ ↔ 𝑥 ⊆ ( ∪ 𝐽 ∖ 𝑦 ) ) ) |
| 20 | 15 19 | mpbid | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑥 ⊆ ( ∪ 𝐽 ∖ 𝑦 ) ) |
| 21 | 12 | clsss2 | ⊢ ( ( ( ∪ 𝐽 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 ⊆ ( ∪ 𝐽 ∖ 𝑦 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( ∪ 𝐽 ∖ 𝑦 ) ) |
| 22 | ssdifin0 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( ∪ 𝐽 ∖ 𝑦 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑦 ) = ∅ ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( ∪ 𝐽 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 ⊆ ( ∪ 𝐽 ∖ 𝑦 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑦 ) = ∅ ) |
| 24 | 14 20 23 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑦 ) = ∅ ) |
| 25 | sseq0 | ⊢ ( ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑦 ) ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) = ∅ ) | |
| 26 | 11 24 25 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) = ∅ ) |
| 27 | 8 26 | jca | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( 𝑐 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) = ∅ ) ) |
| 28 | 27 | rexlimdva2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑐 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) = ∅ ) ) ) |
| 29 | 28 | reximdva | ⊢ ( 𝐽 ∈ Top → ( ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∃ 𝑥 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) = ∅ ) ) ) |
| 30 | 29 | imim2d | ⊢ ( 𝐽 ∈ Top → ( ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) = ∅ ) ) ) ) |
| 31 | 30 | ralimdv | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) = ∅ ) ) ) ) |
| 32 | 31 | ralimdv | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) = ∅ ) ) ) ) |
| 33 | 32 | imp | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) → ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) = ∅ ) ) ) |
| 34 | isnrm2 | ⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝑑 ) = ∅ ) ) ) ) | |
| 35 | 7 33 34 | sylanbrc | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) → 𝐽 ∈ Nrm ) |
| 36 | 6 35 | impbii | ⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) |