This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrmsep2 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → 𝐽 ∈ Nrm ) | |
| 2 | simpr2 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → 𝐷 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | cldopn | ⊢ ( 𝐷 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ 𝐷 ) ∈ 𝐽 ) |
| 5 | 2 4 | syl | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ( ∪ 𝐽 ∖ 𝐷 ) ∈ 𝐽 ) |
| 6 | simpr1 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → 𝐶 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 7 | simpr3 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 8 | 3 | cldss | ⊢ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → 𝐶 ⊆ ∪ 𝐽 ) |
| 9 | reldisj | ⊢ ( 𝐶 ⊆ ∪ 𝐽 → ( ( 𝐶 ∩ 𝐷 ) = ∅ ↔ 𝐶 ⊆ ( ∪ 𝐽 ∖ 𝐷 ) ) ) | |
| 10 | 6 8 9 | 3syl | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ( ( 𝐶 ∩ 𝐷 ) = ∅ ↔ 𝐶 ⊆ ( ∪ 𝐽 ∖ 𝐷 ) ) ) |
| 11 | 7 10 | mpbid | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → 𝐶 ⊆ ( ∪ 𝐽 ∖ 𝐷 ) ) |
| 12 | nrmsep3 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( ( ∪ 𝐽 ∖ 𝐷 ) ∈ 𝐽 ∧ 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐶 ⊆ ( ∪ 𝐽 ∖ 𝐷 ) ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( ∪ 𝐽 ∖ 𝐷 ) ) ) | |
| 13 | 1 5 6 11 12 | syl13anc | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( ∪ 𝐽 ∖ 𝐷 ) ) ) |
| 14 | ssdifin0 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( ∪ 𝐽 ∖ 𝐷 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) | |
| 15 | 14 | anim2i | ⊢ ( ( 𝐶 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( ∪ 𝐽 ∖ 𝐷 ) ) → ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) |
| 16 | 15 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( ∪ 𝐽 ∖ 𝐷 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) |
| 17 | 13 16 | syl | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) |