This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a left module". (Contributed by NM, 4-Nov-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmod.v | |- V = ( Base ` W ) |
|
| islmod.a | |- .+ = ( +g ` W ) |
||
| islmod.s | |- .x. = ( .s ` W ) |
||
| islmod.f | |- F = ( Scalar ` W ) |
||
| islmod.k | |- K = ( Base ` F ) |
||
| islmod.p | |- .+^ = ( +g ` F ) |
||
| islmod.t | |- .X. = ( .r ` F ) |
||
| islmod.u | |- .1. = ( 1r ` F ) |
||
| Assertion | islmod | |- ( W e. LMod <-> ( W e. Grp /\ F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmod.v | |- V = ( Base ` W ) |
|
| 2 | islmod.a | |- .+ = ( +g ` W ) |
|
| 3 | islmod.s | |- .x. = ( .s ` W ) |
|
| 4 | islmod.f | |- F = ( Scalar ` W ) |
|
| 5 | islmod.k | |- K = ( Base ` F ) |
|
| 6 | islmod.p | |- .+^ = ( +g ` F ) |
|
| 7 | islmod.t | |- .X. = ( .r ` F ) |
|
| 8 | islmod.u | |- .1. = ( 1r ` F ) |
|
| 9 | fveq2 | |- ( g = W -> ( Base ` g ) = ( Base ` W ) ) |
|
| 10 | 9 1 | eqtr4di | |- ( g = W -> ( Base ` g ) = V ) |
| 11 | fveq2 | |- ( g = W -> ( +g ` g ) = ( +g ` W ) ) |
|
| 12 | 11 2 | eqtr4di | |- ( g = W -> ( +g ` g ) = .+ ) |
| 13 | fveq2 | |- ( g = W -> ( Scalar ` g ) = ( Scalar ` W ) ) |
|
| 14 | 13 4 | eqtr4di | |- ( g = W -> ( Scalar ` g ) = F ) |
| 15 | fveq2 | |- ( g = W -> ( .s ` g ) = ( .s ` W ) ) |
|
| 16 | 15 3 | eqtr4di | |- ( g = W -> ( .s ` g ) = .x. ) |
| 17 | 16 | sbceq1d | |- ( g = W -> ( [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 18 | 14 17 | sbceqbid | |- ( g = W -> ( [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 19 | 12 18 | sbceqbid | |- ( g = W -> ( [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 20 | 10 19 | sbceqbid | |- ( g = W -> ( [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. V / v ]. [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 21 | 1 | fvexi | |- V e. _V |
| 22 | 2 | fvexi | |- .+ e. _V |
| 23 | 4 | fvexi | |- F e. _V |
| 24 | simp3 | |- ( ( v = V /\ a = .+ /\ f = F ) -> f = F ) |
|
| 25 | 24 | fveq2d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( Base ` f ) = ( Base ` F ) ) |
| 26 | 25 5 | eqtr4di | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( Base ` f ) = K ) |
| 27 | 24 | fveq2d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( +g ` f ) = ( +g ` F ) ) |
| 28 | 27 6 | eqtr4di | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( +g ` f ) = .+^ ) |
| 29 | 24 | fveq2d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( .r ` f ) = ( .r ` F ) ) |
| 30 | 29 7 | eqtr4di | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( .r ` f ) = .X. ) |
| 31 | 30 | sbceq1d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .X. / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 32 | 7 | fvexi | |- .X. e. _V |
| 33 | oveq | |- ( t = .X. -> ( q t r ) = ( q .X. r ) ) |
|
| 34 | 33 | oveq1d | |- ( t = .X. -> ( ( q t r ) s w ) = ( ( q .X. r ) s w ) ) |
| 35 | 34 | eqeq1d | |- ( t = .X. -> ( ( ( q t r ) s w ) = ( q s ( r s w ) ) <-> ( ( q .X. r ) s w ) = ( q s ( r s w ) ) ) ) |
| 36 | 35 | anbi1d | |- ( t = .X. -> ( ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) <-> ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
| 37 | 36 | anbi2d | |- ( t = .X. -> ( ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) |
| 38 | 37 | 2ralbidv | |- ( t = .X. -> ( A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) |
| 39 | 38 | 2ralbidv | |- ( t = .X. -> ( A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) |
| 40 | 39 | anbi2d | |- ( t = .X. -> ( ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 41 | 32 40 | sbcie | |- ( [. .X. / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) |
| 42 | 24 | eleq1d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( f e. Ring <-> F e. Ring ) ) |
| 43 | simp1 | |- ( ( v = V /\ a = .+ /\ f = F ) -> v = V ) |
|
| 44 | 43 | eleq2d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( r s w ) e. v <-> ( r s w ) e. V ) ) |
| 45 | simp2 | |- ( ( v = V /\ a = .+ /\ f = F ) -> a = .+ ) |
|
| 46 | 45 | oveqd | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( w a x ) = ( w .+ x ) ) |
| 47 | 46 | oveq2d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( r s ( w a x ) ) = ( r s ( w .+ x ) ) ) |
| 48 | 45 | oveqd | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( r s w ) a ( r s x ) ) = ( ( r s w ) .+ ( r s x ) ) ) |
| 49 | 47 48 | eqeq12d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) <-> ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) ) ) |
| 50 | 45 | oveqd | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( q s w ) a ( r s w ) ) = ( ( q s w ) .+ ( r s w ) ) ) |
| 51 | 50 | eqeq2d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) <-> ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) ) |
| 52 | 44 49 51 | 3anbi123d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) <-> ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) ) ) |
| 53 | 24 | fveq2d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( 1r ` f ) = ( 1r ` F ) ) |
| 54 | 53 8 | eqtr4di | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( 1r ` f ) = .1. ) |
| 55 | 54 | oveq1d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( 1r ` f ) s w ) = ( .1. s w ) ) |
| 56 | 55 | eqeq1d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( 1r ` f ) s w ) = w <-> ( .1. s w ) = w ) ) |
| 57 | 56 | anbi2d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) <-> ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) |
| 58 | 52 57 | anbi12d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) |
| 59 | 43 58 | raleqbidv | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) |
| 60 | 43 59 | raleqbidv | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) |
| 61 | 60 | 2ralbidv | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) |
| 62 | 42 61 | anbi12d | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 63 | 41 62 | bitrid | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. .X. / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 64 | 31 63 | bitrd | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 65 | 28 64 | sbceqbid | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 66 | 26 65 | sbceqbid | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 67 | 66 | sbcbidv | |- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .x. / s ]. [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 68 | 21 22 23 67 | sbc3ie | |- ( [. V / v ]. [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .x. / s ]. [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) |
| 69 | 3 | fvexi | |- .x. e. _V |
| 70 | 5 | fvexi | |- K e. _V |
| 71 | 6 | fvexi | |- .+^ e. _V |
| 72 | simp2 | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> k = K ) |
|
| 73 | simp1 | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> s = .x. ) |
|
| 74 | 73 | oveqd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( r s w ) = ( r .x. w ) ) |
| 75 | 74 | eleq1d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( r s w ) e. V <-> ( r .x. w ) e. V ) ) |
| 76 | 73 | oveqd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( r s ( w .+ x ) ) = ( r .x. ( w .+ x ) ) ) |
| 77 | 73 | oveqd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( r s x ) = ( r .x. x ) ) |
| 78 | 74 77 | oveq12d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( r s w ) .+ ( r s x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) ) |
| 79 | 76 78 | eqeq12d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) <-> ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) ) ) |
| 80 | simp3 | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> p = .+^ ) |
|
| 81 | 80 | oveqd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q p r ) = ( q .+^ r ) ) |
| 82 | 81 | oveq1d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q p r ) s w ) = ( ( q .+^ r ) s w ) ) |
| 83 | 73 | oveqd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q .+^ r ) s w ) = ( ( q .+^ r ) .x. w ) ) |
| 84 | 82 83 | eqtrd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q p r ) s w ) = ( ( q .+^ r ) .x. w ) ) |
| 85 | 73 | oveqd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s w ) = ( q .x. w ) ) |
| 86 | 85 74 | oveq12d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q s w ) .+ ( r s w ) ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) |
| 87 | 84 86 | eqeq12d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) <-> ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) ) |
| 88 | 75 79 87 | 3anbi123d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) <-> ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) ) ) |
| 89 | 73 | oveqd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q .X. r ) s w ) = ( ( q .X. r ) .x. w ) ) |
| 90 | 74 | oveq2d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s ( r s w ) ) = ( q s ( r .x. w ) ) ) |
| 91 | 73 | oveqd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s ( r .x. w ) ) = ( q .x. ( r .x. w ) ) ) |
| 92 | 90 91 | eqtrd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s ( r s w ) ) = ( q .x. ( r .x. w ) ) ) |
| 93 | 89 92 | eqeq12d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) <-> ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) ) ) |
| 94 | 73 | oveqd | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( .1. s w ) = ( .1. .x. w ) ) |
| 95 | 94 | eqeq1d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( .1. s w ) = w <-> ( .1. .x. w ) = w ) ) |
| 96 | 93 95 | anbi12d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) <-> ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
| 97 | 88 96 | anbi12d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 98 | 97 | 2ralbidv | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 99 | 72 98 | raleqbidv | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 100 | 72 99 | raleqbidv | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 101 | 100 | anbi2d | |- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) ) |
| 102 | 69 70 71 101 | sbc3ie | |- ( [. .x. / s ]. [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 103 | 68 102 | bitri | |- ( [. V / v ]. [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 104 | 20 103 | bitrdi | |- ( g = W -> ( [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) ) |
| 105 | df-lmod | |- LMod = { g e. Grp | [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) } |
|
| 106 | 104 105 | elrab2 | |- ( W e. LMod <-> ( W e. Grp /\ ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) ) |
| 107 | 3anass | |- ( ( W e. Grp /\ F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) <-> ( W e. Grp /\ ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) ) |
|
| 108 | 106 107 | bitr4i | |- ( W e. LMod <-> ( W e. Grp /\ F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |