This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmod.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| islmod.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| islmod.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| islmod.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| islmod.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| islmod.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | ||
| islmod.t | ⊢ × = ( .r ‘ 𝐹 ) | ||
| islmod.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | ||
| Assertion | lmodlema | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmod.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | islmod.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | islmod.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | islmod.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | islmod.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | islmod.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | |
| 7 | islmod.t | ⊢ × = ( .r ‘ 𝐹 ) | |
| 8 | islmod.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | |
| 9 | 1 2 3 4 5 6 7 8 | islmod | ⊢ ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 10 | 9 | simp3bi | ⊢ ( 𝑊 ∈ LMod → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 11 | oveq1 | ⊢ ( 𝑞 = 𝑄 → ( 𝑞 ⨣ 𝑟 ) = ( 𝑄 ⨣ 𝑟 ) ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) ) |
| 13 | oveq1 | ⊢ ( 𝑞 = 𝑄 → ( 𝑞 · 𝑤 ) = ( 𝑄 · 𝑤 ) ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑞 = 𝑄 → ( ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
| 16 | 15 | 3anbi3d | ⊢ ( 𝑞 = 𝑄 → ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ↔ ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) ) |
| 17 | oveq1 | ⊢ ( 𝑞 = 𝑄 → ( 𝑞 × 𝑟 ) = ( 𝑄 × 𝑟 ) ) | |
| 18 | 17 | oveq1d | ⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( ( 𝑄 × 𝑟 ) · 𝑤 ) ) |
| 19 | oveq1 | ⊢ ( 𝑞 = 𝑄 → ( 𝑞 · ( 𝑟 · 𝑤 ) ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ) | |
| 20 | 18 19 | eqeq12d | ⊢ ( 𝑞 = 𝑄 → ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ) ) |
| 21 | 20 | anbi1d | ⊢ ( 𝑞 = 𝑄 → ( ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 22 | 16 21 | anbi12d | ⊢ ( 𝑞 = 𝑄 → ( ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 23 | 22 | 2ralbidv | ⊢ ( 𝑞 = 𝑄 → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 24 | oveq1 | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 · 𝑤 ) = ( 𝑅 · 𝑤 ) ) | |
| 25 | 24 | eleq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ↔ ( 𝑅 · 𝑤 ) ∈ 𝑉 ) ) |
| 26 | oveq1 | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( 𝑅 · ( 𝑤 + 𝑥 ) ) ) | |
| 27 | oveq1 | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 · 𝑥 ) = ( 𝑅 · 𝑥 ) ) | |
| 28 | 24 27 | oveq12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ) |
| 29 | 26 28 | eqeq12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ↔ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ) ) |
| 30 | oveq2 | ⊢ ( 𝑟 = 𝑅 → ( 𝑄 ⨣ 𝑟 ) = ( 𝑄 ⨣ 𝑅 ) ) | |
| 31 | 30 | oveq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) ) |
| 32 | 24 | oveq2d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) |
| 33 | 31 32 | eqeq12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ) |
| 34 | 25 29 33 | 3anbi123d | ⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ↔ ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ) ) |
| 35 | oveq2 | ⊢ ( 𝑟 = 𝑅 → ( 𝑄 × 𝑟 ) = ( 𝑄 × 𝑅 ) ) | |
| 36 | 35 | oveq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( ( 𝑄 × 𝑅 ) · 𝑤 ) ) |
| 37 | 24 | oveq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑄 · ( 𝑟 · 𝑤 ) ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ) |
| 38 | 36 37 | eqeq12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ) ) |
| 39 | 38 | anbi1d | ⊢ ( 𝑟 = 𝑅 → ( ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 40 | 34 39 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 41 | 40 | 2ralbidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 42 | 23 41 | rspc2v | ⊢ ( ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 43 | 10 42 | mpan9 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 44 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑤 + 𝑥 ) = ( 𝑤 + 𝑋 ) ) | |
| 45 | 44 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( 𝑅 · ( 𝑤 + 𝑋 ) ) ) |
| 46 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑅 · 𝑥 ) = ( 𝑅 · 𝑋 ) ) | |
| 47 | 46 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ) |
| 48 | 45 47 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ↔ ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ) ) |
| 49 | 48 | 3anbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ↔ ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ) ) |
| 50 | 49 | anbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
| 51 | oveq2 | ⊢ ( 𝑤 = 𝑌 → ( 𝑅 · 𝑤 ) = ( 𝑅 · 𝑌 ) ) | |
| 52 | 51 | eleq1d | ⊢ ( 𝑤 = 𝑌 → ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ↔ ( 𝑅 · 𝑌 ) ∈ 𝑉 ) ) |
| 53 | oveq1 | ⊢ ( 𝑤 = 𝑌 → ( 𝑤 + 𝑋 ) = ( 𝑌 + 𝑋 ) ) | |
| 54 | 53 | oveq2d | ⊢ ( 𝑤 = 𝑌 → ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( 𝑅 · ( 𝑌 + 𝑋 ) ) ) |
| 55 | 51 | oveq1d | ⊢ ( 𝑤 = 𝑌 → ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ) |
| 56 | 54 55 | eqeq12d | ⊢ ( 𝑤 = 𝑌 → ( ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ↔ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ) ) |
| 57 | oveq2 | ⊢ ( 𝑤 = 𝑌 → ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) ) | |
| 58 | oveq2 | ⊢ ( 𝑤 = 𝑌 → ( 𝑄 · 𝑤 ) = ( 𝑄 · 𝑌 ) ) | |
| 59 | 58 51 | oveq12d | ⊢ ( 𝑤 = 𝑌 → ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) |
| 60 | 57 59 | eqeq12d | ⊢ ( 𝑤 = 𝑌 → ( ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ↔ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ) |
| 61 | 52 56 60 | 3anbi123d | ⊢ ( 𝑤 = 𝑌 → ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ↔ ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ) ) |
| 62 | oveq2 | ⊢ ( 𝑤 = 𝑌 → ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( ( 𝑄 × 𝑅 ) · 𝑌 ) ) | |
| 63 | 51 | oveq2d | ⊢ ( 𝑤 = 𝑌 → ( 𝑄 · ( 𝑅 · 𝑤 ) ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ) |
| 64 | 62 63 | eqeq12d | ⊢ ( 𝑤 = 𝑌 → ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ↔ ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ) ) |
| 65 | oveq2 | ⊢ ( 𝑤 = 𝑌 → ( 1 · 𝑤 ) = ( 1 · 𝑌 ) ) | |
| 66 | id | ⊢ ( 𝑤 = 𝑌 → 𝑤 = 𝑌 ) | |
| 67 | 65 66 | eqeq12d | ⊢ ( 𝑤 = 𝑌 → ( ( 1 · 𝑤 ) = 𝑤 ↔ ( 1 · 𝑌 ) = 𝑌 ) ) |
| 68 | 64 67 | anbi12d | ⊢ ( 𝑤 = 𝑌 → ( ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ) ) ) |
| 69 | 61 68 | anbi12d | ⊢ ( 𝑤 = 𝑌 → ( ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ) ) ) ) |
| 70 | 50 69 | rspc2v | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) → ( ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ) ) ) ) |
| 71 | 43 70 | syl5com | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ) ) ) ) |
| 72 | 71 | 3impia | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ) ) ) |