This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinito2.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| isinito2.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) | ||
| isinito2lem.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| isinito2lem.i | ⊢ ( 𝜑 → 𝐼 ∈ ( Base ‘ 𝐶 ) ) | ||
| Assertion | isinito2lem | ⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito2.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| 2 | isinito2.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) | |
| 3 | isinito2lem.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | isinito2lem.i | ⊢ ( 𝜑 → 𝐼 ∈ ( Base ‘ 𝐶 ) ) | |
| 5 | reutru | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ) | |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | eqeq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) | |
| 8 | 7 | reubidv | ⊢ ( 𝑦 = ∅ → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 9 | 6 8 | ralsn | ⊢ ( ∀ 𝑦 ∈ { ∅ } ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) |
| 10 | eqid | ⊢ ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 ) | |
| 11 | setc1oterm | ⊢ ( SetCat ‘ 1o ) ∈ TermCat | |
| 12 | 1 11 | eqeltri | ⊢ 1 ∈ TermCat |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 1 ∈ TermCat ) |
| 14 | 13 | termccd | ⊢ ( 𝜑 → 1 ∈ Cat ) |
| 15 | 1 | setc1obas | ⊢ 1o = ( Base ‘ 1 ) |
| 16 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 17 | 16 | a1i | ⊢ ( 𝜑 → ∅ ∈ 1o ) |
| 18 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 19 | 10 14 3 15 17 2 18 4 | diag11 | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) = ∅ ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) = ∅ ) |
| 21 | 20 | opeq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 = 〈 ∅ , ∅ 〉 ) |
| 22 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 1 ∈ Cat ) |
| 23 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 24 | 16 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∅ ∈ 1o ) |
| 25 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 26 | 10 22 23 15 24 2 18 25 | diag11 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) = ∅ ) |
| 27 | 21 26 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) = ( 〈 ∅ , ∅ 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ∅ ) ) |
| 28 | snex | ⊢ { 〈 ∅ , ∅ , ∅ 〉 } ∈ V | |
| 29 | 28 | ovsn2 | ⊢ ( 〈 ∅ , ∅ 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ∅ ) = { 〈 ∅ , ∅ , ∅ 〉 } |
| 30 | 27 29 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) = { 〈 ∅ , ∅ , ∅ 〉 } ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) = { 〈 ∅ , ∅ , ∅ 〉 } ) |
| 32 | 12 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 1 ∈ TermCat ) |
| 33 | 32 | termccd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 1 ∈ Cat ) |
| 34 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝐶 ∈ Cat ) |
| 35 | 16 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ∅ ∈ 1o ) |
| 36 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 37 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 38 | eqid | ⊢ ( Id ‘ 1 ) = ( Id ‘ 1 ) | |
| 39 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 40 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 41 | 10 33 34 15 35 2 18 36 37 38 39 40 | diag12 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) = ( ( Id ‘ 1 ) ‘ ∅ ) ) |
| 42 | 1 38 | setc1oid | ⊢ ( ( Id ‘ 1 ) ‘ ∅ ) = ∅ |
| 43 | 41 42 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) = ∅ ) |
| 44 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ∅ = ∅ ) | |
| 45 | 31 43 44 | oveq123d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) = ( ∅ { 〈 ∅ , ∅ , ∅ 〉 } ∅ ) ) |
| 46 | 6 | ovsn2 | ⊢ ( ∅ { 〈 ∅ , ∅ , ∅ 〉 } ∅ ) = ∅ |
| 47 | 45 46 | eqtr2di | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) |
| 48 | tbtru | ⊢ ( ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ( ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ⊤ ) ) | |
| 49 | 47 48 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ⊤ ) ) |
| 50 | 49 | reubidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ∅ = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ) ) |
| 51 | 9 50 | bitr2id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ↔ ∀ 𝑦 ∈ { ∅ } ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 52 | 26 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) = ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) ) |
| 53 | 1oex | ⊢ 1o ∈ V | |
| 54 | 53 | ovsn2 | ⊢ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) = 1o |
| 55 | df1o2 | ⊢ 1o = { ∅ } | |
| 56 | 54 55 | eqtri | ⊢ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) = { ∅ } |
| 57 | 52 56 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) = { ∅ } ) |
| 58 | 57 | raleqdv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ↔ ∀ 𝑦 ∈ { ∅ } ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 59 | 51 58 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ⊤ ↔ ∀ 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 60 | 5 59 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ ∀ 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 61 | 60 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 62 | 18 37 3 4 | isinito | ⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) |
| 63 | 1 | setc1ohomfval | ⊢ { 〈 ∅ , ∅ , 1o 〉 } = ( Hom ‘ 1 ) |
| 64 | 1 | setc1ocofval | ⊢ { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } = ( comp ‘ 1 ) |
| 65 | 1 2 3 | funcsetc1ocl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 1 ) ) |
| 66 | 65 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 1 ) ( 2nd ‘ 𝐹 ) ) |
| 67 | 19 | oveq2d | ⊢ ( 𝜑 → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) = ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ∅ ) ) |
| 68 | 67 54 | eqtrdi | ⊢ ( 𝜑 → ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) = 1o ) |
| 69 | 16 68 | eleqtrrid | ⊢ ( 𝜑 → ∅ ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) ) ) |
| 70 | 18 15 37 63 64 17 66 4 69 | isup | ⊢ ( 𝜑 → ( 𝐼 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 1 ) ∅ ) ∅ ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( ∅ { 〈 ∅ , ∅ , 1o 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∃! 𝑓 ∈ ( 𝐼 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑦 = ( ( ( 𝐼 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ 𝑓 ) ( 〈 ∅ , ( ( 1st ‘ 𝐹 ) ‘ 𝐼 ) 〉 { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ∅ ) ) ) |
| 71 | 61 62 70 | 3bitr4d | ⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |
| 72 | 65 | up1st2ndb | ⊢ ( 𝜑 → ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ↔ 𝐼 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |
| 73 | 71 72 | bitr4d | ⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |