This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the constant functor at a morphism. (Contributed by Mario Carneiro, 6-Jan-2017) (Revised by Mario Carneiro, 15-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diagval.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diagval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diagval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| diag11.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag11.c | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| diag11.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | ||
| diag11.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| diag11.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| diag12.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| diag12.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| diag12.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| diag12.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 𝐽 𝑍 ) ) | ||
| Assertion | diag12 | ⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐹 ) = ( 1 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diagval.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diagval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | diagval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | diag11.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 5 | diag11.c | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 6 | diag11.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | |
| 7 | diag11.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 8 | diag11.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | diag12.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 10 | diag12.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 11 | diag12.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 12 | diag12.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 𝐽 𝑍 ) ) | |
| 13 | 1 2 3 | diagval | ⊢ ( 𝜑 → 𝐿 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) = ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ) |
| 15 | 14 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ‘ 𝑋 ) ) |
| 16 | 6 15 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ‘ 𝑋 ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ‘ 𝑋 ) ) ) |
| 18 | 17 | oveqd | ⊢ ( 𝜑 → ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) = ( 𝑌 ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ‘ 𝑋 ) ) 𝑍 ) ) |
| 19 | 18 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐹 ) = ( ( 𝑌 ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ‘ 𝑋 ) ) 𝑍 ) ‘ 𝐹 ) ) |
| 20 | eqid | ⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) | |
| 21 | eqid | ⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) | |
| 22 | eqid | ⊢ ( 𝐶 1stF 𝐷 ) = ( 𝐶 1stF 𝐷 ) | |
| 23 | 21 2 3 22 | 1stfcl | ⊢ ( 𝜑 → ( 𝐶 1stF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐶 ) ) |
| 24 | eqid | ⊢ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ‘ 𝑋 ) | |
| 25 | 20 4 2 3 23 7 5 24 8 9 10 11 12 | curf12 | ⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ ( ( 1st ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ‘ 𝑋 ) ) 𝑍 ) ‘ 𝐹 ) = ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) 𝐹 ) ) |
| 26 | df-ov | ⊢ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) 𝐹 ) = ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) ‘ 〈 ( 1 ‘ 𝑋 ) , 𝐹 〉 ) | |
| 27 | 21 4 7 | xpcbas | ⊢ ( 𝐴 × 𝐵 ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 28 | eqid | ⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 29 | 5 8 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 30 | 5 11 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑍 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 31 | 21 27 28 2 3 22 29 30 | 1stf2 | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) = ( 1st ↾ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) ) ) |
| 32 | 31 | fveq1d | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) ‘ 〈 ( 1 ‘ 𝑋 ) , 𝐹 〉 ) = ( ( 1st ↾ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) ) ‘ 〈 ( 1 ‘ 𝑋 ) , 𝐹 〉 ) ) |
| 33 | 26 32 | eqtrid | ⊢ ( 𝜑 → ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) 𝐹 ) = ( ( 1st ↾ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) ) ‘ 〈 ( 1 ‘ 𝑋 ) , 𝐹 〉 ) ) |
| 34 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 35 | 4 34 10 2 5 | catidcl | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 36 | 35 12 | opelxpd | ⊢ ( 𝜑 → 〈 ( 1 ‘ 𝑋 ) , 𝐹 〉 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑌 𝐽 𝑍 ) ) ) |
| 37 | 21 4 7 34 9 5 8 5 11 28 | xpchom2 | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) = ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑌 𝐽 𝑍 ) ) ) |
| 38 | 36 37 | eleqtrrd | ⊢ ( 𝜑 → 〈 ( 1 ‘ 𝑋 ) , 𝐹 〉 ∈ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) ) |
| 39 | 38 | fvresd | ⊢ ( 𝜑 → ( ( 1st ↾ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) ) ‘ 〈 ( 1 ‘ 𝑋 ) , 𝐹 〉 ) = ( 1st ‘ 〈 ( 1 ‘ 𝑋 ) , 𝐹 〉 ) ) |
| 40 | op1stg | ⊢ ( ( ( 1 ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑌 𝐽 𝑍 ) ) → ( 1st ‘ 〈 ( 1 ‘ 𝑋 ) , 𝐹 〉 ) = ( 1 ‘ 𝑋 ) ) | |
| 41 | 35 12 40 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 ( 1 ‘ 𝑋 ) , 𝐹 〉 ) = ( 1 ‘ 𝑋 ) ) |
| 42 | 33 39 41 | 3eqtrd | ⊢ ( 𝜑 → ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑋 , 𝑍 〉 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) |
| 43 | 19 25 42 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐹 ) = ( 1 ‘ 𝑋 ) ) |