This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of morphisms of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | funcsetc1o.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| Assertion | setc1ohomfval | ⊢ { 〈 ∅ , ∅ , 1o 〉 } = ( Hom ‘ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetc1o.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| 2 | df-ot | ⊢ 〈 ∅ , ∅ , 1o 〉 = 〈 〈 ∅ , ∅ 〉 , 1o 〉 | |
| 3 | 2 | sneqi | ⊢ { 〈 ∅ , ∅ , 1o 〉 } = { 〈 〈 ∅ , ∅ 〉 , 1o 〉 } |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 1oex | ⊢ 1o ∈ V | |
| 6 | df1o2 | ⊢ 1o = { ∅ } | |
| 7 | 6 | fveq2i | ⊢ ( SetCat ‘ 1o ) = ( SetCat ‘ { ∅ } ) |
| 8 | 1 7 | eqtri | ⊢ 1 = ( SetCat ‘ { ∅ } ) |
| 9 | p0ex | ⊢ { ∅ } ∈ V | |
| 10 | 9 | a1i | ⊢ ( ⊤ → { ∅ } ∈ V ) |
| 11 | eqid | ⊢ ( Hom ‘ 1 ) = ( Hom ‘ 1 ) | |
| 12 | 8 10 11 | setchomfval | ⊢ ( ⊤ → ( Hom ‘ 1 ) = ( 𝑥 ∈ { ∅ } , 𝑦 ∈ { ∅ } ↦ ( 𝑦 ↑m 𝑥 ) ) ) |
| 13 | 12 | mptru | ⊢ ( Hom ‘ 1 ) = ( 𝑥 ∈ { ∅ } , 𝑦 ∈ { ∅ } ↦ ( 𝑦 ↑m 𝑥 ) ) |
| 14 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝑦 ↑m 𝑥 ) = ( 𝑦 ↑m ∅ ) ) | |
| 15 | oveq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ↑m ∅ ) = ( ∅ ↑m ∅ ) ) | |
| 16 | 0map0sn0 | ⊢ ( ∅ ↑m ∅ ) = { ∅ } | |
| 17 | 16 6 | eqtr4i | ⊢ ( ∅ ↑m ∅ ) = 1o |
| 18 | 15 17 | eqtrdi | ⊢ ( 𝑦 = ∅ → ( 𝑦 ↑m ∅ ) = 1o ) |
| 19 | 13 14 18 | mposn | ⊢ ( ( ∅ ∈ V ∧ ∅ ∈ V ∧ 1o ∈ V ) → ( Hom ‘ 1 ) = { 〈 〈 ∅ , ∅ 〉 , 1o 〉 } ) |
| 20 | 4 4 5 19 | mp3an | ⊢ ( Hom ‘ 1 ) = { 〈 〈 ∅ , ∅ 〉 , 1o 〉 } |
| 21 | 3 20 | eqtr4i | ⊢ { 〈 ∅ , ∅ , 1o 〉 } = ( Hom ‘ 1 ) |