This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinito2.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| isinito2.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) | ||
| Assertion | isinito2 | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito2.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| 2 | isinito2.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) | |
| 3 | initorcl | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐶 ∈ Cat ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | 4 | initoo2 | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 6 | 1 2 3 5 | isinito2lem | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |
| 7 | 6 | ibi | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 8 | id | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) | |
| 9 | 8 | up1st2nd | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → 𝐼 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 1 ) ∅ ) ∅ ) |
| 10 | 9 | uprcl2 | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → ( 1st ‘ 𝐹 ) ( 𝐶 Func 1 ) ( 2nd ‘ 𝐹 ) ) |
| 11 | 10 | funcrcl2 | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → 𝐶 ∈ Cat ) |
| 12 | 9 4 | uprcl4 | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 13 | 1 2 11 12 | isinito2lem | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) ) |
| 14 | 13 | ibir | ⊢ ( 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ → 𝐼 ∈ ( InitO ‘ 𝐶 ) ) |
| 15 | 7 14 | impbii | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ( 𝐹 ( 𝐶 UP 1 ) ∅ ) ∅ ) |