This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the trivial category. (Contributed by Zhi Wang, 22-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | funcsetc1o.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| Assertion | setc1ocofval | ⊢ { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } = ( comp ‘ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetc1o.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| 2 | df-ot | ⊢ 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 = 〈 〈 〈 ∅ , ∅ 〉 , ∅ 〉 , { 〈 ∅ , ∅ , ∅ 〉 } 〉 | |
| 3 | 2 | sneqi | ⊢ { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } = { 〈 〈 〈 ∅ , ∅ 〉 , ∅ 〉 , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } |
| 4 | opex | ⊢ 〈 ∅ , ∅ 〉 ∈ V | |
| 5 | 0ex | ⊢ ∅ ∈ V | |
| 6 | snex | ⊢ { 〈 ∅ , ∅ , ∅ 〉 } ∈ V | |
| 7 | df1o2 | ⊢ 1o = { ∅ } | |
| 8 | 7 | fveq2i | ⊢ ( SetCat ‘ 1o ) = ( SetCat ‘ { ∅ } ) |
| 9 | 1 8 | eqtri | ⊢ 1 = ( SetCat ‘ { ∅ } ) |
| 10 | snex | ⊢ { ∅ } ∈ V | |
| 11 | 10 | a1i | ⊢ ( ⊤ → { ∅ } ∈ V ) |
| 12 | eqid | ⊢ ( comp ‘ 1 ) = ( comp ‘ 1 ) | |
| 13 | 9 11 12 | setccofval | ⊢ ( ⊤ → ( comp ‘ 1 ) = ( 𝑣 ∈ ( { ∅ } × { ∅ } ) , 𝑧 ∈ { ∅ } ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
| 14 | 13 | mptru | ⊢ ( comp ‘ 1 ) = ( 𝑣 ∈ ( { ∅ } × { ∅ } ) , 𝑧 ∈ { ∅ } ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) |
| 15 | 5 5 | xpsn | ⊢ ( { ∅ } × { ∅ } ) = { 〈 ∅ , ∅ 〉 } |
| 16 | eqid | ⊢ { ∅ } = { ∅ } | |
| 17 | eqid | ⊢ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) = ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) | |
| 18 | 15 16 17 | mpoeq123i | ⊢ ( 𝑣 ∈ ( { ∅ } × { ∅ } ) , 𝑧 ∈ { ∅ } ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = ( 𝑣 ∈ { 〈 ∅ , ∅ 〉 } , 𝑧 ∈ { ∅ } ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) |
| 19 | 14 18 | eqtri | ⊢ ( comp ‘ 1 ) = ( 𝑣 ∈ { 〈 ∅ , ∅ 〉 } , 𝑧 ∈ { ∅ } ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) |
| 20 | 5 5 | op2ndd | ⊢ ( 𝑣 = 〈 ∅ , ∅ 〉 → ( 2nd ‘ 𝑣 ) = ∅ ) |
| 21 | 20 | oveq2d | ⊢ ( 𝑣 = 〈 ∅ , ∅ 〉 → ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) = ( 𝑧 ↑m ∅ ) ) |
| 22 | 5 5 | op1std | ⊢ ( 𝑣 = 〈 ∅ , ∅ 〉 → ( 1st ‘ 𝑣 ) = ∅ ) |
| 23 | 20 22 | oveq12d | ⊢ ( 𝑣 = 〈 ∅ , ∅ 〉 → ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) = ( ∅ ↑m ∅ ) ) |
| 24 | 0map0sn0 | ⊢ ( ∅ ↑m ∅ ) = { ∅ } | |
| 25 | 23 24 | eqtrdi | ⊢ ( 𝑣 = 〈 ∅ , ∅ 〉 → ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) = { ∅ } ) |
| 26 | eqidd | ⊢ ( 𝑣 = 〈 ∅ , ∅ 〉 → ( 𝑔 ∘ 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) | |
| 27 | 21 25 26 | mpoeq123dv | ⊢ ( 𝑣 = 〈 ∅ , ∅ 〉 → ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) = ( 𝑔 ∈ ( 𝑧 ↑m ∅ ) , 𝑓 ∈ { ∅ } ↦ ( 𝑔 ∘ 𝑓 ) ) ) |
| 28 | oveq1 | ⊢ ( 𝑧 = ∅ → ( 𝑧 ↑m ∅ ) = ( ∅ ↑m ∅ ) ) | |
| 29 | 28 24 | eqtrdi | ⊢ ( 𝑧 = ∅ → ( 𝑧 ↑m ∅ ) = { ∅ } ) |
| 30 | eqidd | ⊢ ( 𝑧 = ∅ → { ∅ } = { ∅ } ) | |
| 31 | eqidd | ⊢ ( 𝑧 = ∅ → ( 𝑔 ∘ 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) | |
| 32 | 29 30 31 | mpoeq123dv | ⊢ ( 𝑧 = ∅ → ( 𝑔 ∈ ( 𝑧 ↑m ∅ ) , 𝑓 ∈ { ∅ } ↦ ( 𝑔 ∘ 𝑓 ) ) = ( 𝑔 ∈ { ∅ } , 𝑓 ∈ { ∅ } ↦ ( 𝑔 ∘ 𝑓 ) ) ) |
| 33 | eqid | ⊢ ( 𝑔 ∈ { ∅ } , 𝑓 ∈ { ∅ } ↦ ( 𝑔 ∘ 𝑓 ) ) = ( 𝑔 ∈ { ∅ } , 𝑓 ∈ { ∅ } ↦ ( 𝑔 ∘ 𝑓 ) ) | |
| 34 | coeq1 | ⊢ ( 𝑔 = ∅ → ( 𝑔 ∘ 𝑓 ) = ( ∅ ∘ 𝑓 ) ) | |
| 35 | co01 | ⊢ ( ∅ ∘ 𝑓 ) = ∅ | |
| 36 | 34 35 | eqtrdi | ⊢ ( 𝑔 = ∅ → ( 𝑔 ∘ 𝑓 ) = ∅ ) |
| 37 | eqidd | ⊢ ( 𝑓 = ∅ → ∅ = ∅ ) | |
| 38 | 33 36 37 | mposn | ⊢ ( ( ∅ ∈ V ∧ ∅ ∈ V ∧ ∅ ∈ V ) → ( 𝑔 ∈ { ∅ } , 𝑓 ∈ { ∅ } ↦ ( 𝑔 ∘ 𝑓 ) ) = { 〈 〈 ∅ , ∅ 〉 , ∅ 〉 } ) |
| 39 | 5 5 5 38 | mp3an | ⊢ ( 𝑔 ∈ { ∅ } , 𝑓 ∈ { ∅ } ↦ ( 𝑔 ∘ 𝑓 ) ) = { 〈 〈 ∅ , ∅ 〉 , ∅ 〉 } |
| 40 | 32 39 | eqtrdi | ⊢ ( 𝑧 = ∅ → ( 𝑔 ∈ ( 𝑧 ↑m ∅ ) , 𝑓 ∈ { ∅ } ↦ ( 𝑔 ∘ 𝑓 ) ) = { 〈 〈 ∅ , ∅ 〉 , ∅ 〉 } ) |
| 41 | df-ot | ⊢ 〈 ∅ , ∅ , ∅ 〉 = 〈 〈 ∅ , ∅ 〉 , ∅ 〉 | |
| 42 | 41 | sneqi | ⊢ { 〈 ∅ , ∅ , ∅ 〉 } = { 〈 〈 ∅ , ∅ 〉 , ∅ 〉 } |
| 43 | 40 42 | eqtr4di | ⊢ ( 𝑧 = ∅ → ( 𝑔 ∈ ( 𝑧 ↑m ∅ ) , 𝑓 ∈ { ∅ } ↦ ( 𝑔 ∘ 𝑓 ) ) = { 〈 ∅ , ∅ , ∅ 〉 } ) |
| 44 | 19 27 43 | mposn | ⊢ ( ( 〈 ∅ , ∅ 〉 ∈ V ∧ ∅ ∈ V ∧ { 〈 ∅ , ∅ , ∅ 〉 } ∈ V ) → ( comp ‘ 1 ) = { 〈 〈 〈 ∅ , ∅ 〉 , ∅ 〉 , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } ) |
| 45 | 4 5 6 44 | mp3an | ⊢ ( comp ‘ 1 ) = { 〈 〈 〈 ∅ , ∅ 〉 , ∅ 〉 , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } |
| 46 | 3 45 | eqtr4i | ⊢ { 〈 〈 ∅ , ∅ 〉 , ∅ , { 〈 ∅ , ∅ , ∅ 〉 } 〉 } = ( comp ‘ 1 ) |