This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isinffi | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ficardom | ⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ∈ ω ) | |
| 2 | isinf | ⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑎 ∈ ω ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ) | |
| 3 | breq2 | ⊢ ( 𝑎 = ( card ‘ 𝐵 ) → ( 𝑐 ≈ 𝑎 ↔ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) | |
| 4 | 3 | anbi2d | ⊢ ( 𝑎 = ( card ‘ 𝐵 ) → ( ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ↔ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ) |
| 5 | 4 | exbidv | ⊢ ( 𝑎 = ( card ‘ 𝐵 ) → ( ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ↔ ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ) |
| 6 | 5 | rspcva | ⊢ ( ( ( card ‘ 𝐵 ) ∈ ω ∧ ∀ 𝑎 ∈ ω ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) |
| 7 | 1 2 6 | syl2anr | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) |
| 8 | simprr | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → 𝑐 ≈ ( card ‘ 𝐵 ) ) | |
| 9 | ficardid | ⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ≈ 𝐵 ) | |
| 10 | 9 | ad2antlr | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
| 11 | entr | ⊢ ( ( 𝑐 ≈ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ≈ 𝐵 ) → 𝑐 ≈ 𝐵 ) | |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → 𝑐 ≈ 𝐵 ) |
| 13 | 12 | ensymd | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → 𝐵 ≈ 𝑐 ) |
| 14 | bren | ⊢ ( 𝐵 ≈ 𝑐 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) | |
| 15 | 13 14 | sylib | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) |
| 16 | f1of1 | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑐 → 𝑓 : 𝐵 –1-1→ 𝑐 ) | |
| 17 | simplrl | ⊢ ( ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) → 𝑐 ⊆ 𝐴 ) | |
| 18 | f1ss | ⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) → 𝑓 : 𝐵 –1-1→ 𝐴 ) | |
| 19 | 16 17 18 | syl2an2 | ⊢ ( ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) → 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| 20 | 19 | ex | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ( 𝑓 : 𝐵 –1-1-onto→ 𝑐 → 𝑓 : 𝐵 –1-1→ 𝐴 ) ) |
| 21 | 20 | eximdv | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ( ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑐 → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐴 ) ) |
| 22 | 15 21 | mpd | ⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| 23 | 7 22 | exlimddv | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐴 ) |