This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert space is a complete subcomplex pre-Hilbert space over RR or CC . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlress.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| hlress.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | ishl2 | ⊢ ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlress.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | hlress.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | ishl | ⊢ ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ) | |
| 4 | df-3an | ⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ∧ 𝑊 ∈ ℂPreHil ) ↔ ( ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ∧ 𝑊 ∈ ℂPreHil ) ) | |
| 5 | 3ancomb | ⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) ↔ ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ∧ 𝑊 ∈ ℂPreHil ) ) | |
| 6 | cphnvc | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec ) | |
| 7 | 1 | isbn | ⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) |
| 8 | 3anass | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ↔ ( 𝑊 ∈ NrmVec ∧ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) ) | |
| 9 | 7 8 | bitri | ⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) ) |
| 10 | 9 | baib | ⊢ ( 𝑊 ∈ NrmVec → ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) ) |
| 11 | 6 10 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) ) |
| 12 | 1 2 | cphsca | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 13 | 12 | eleq1d | ⊢ ( 𝑊 ∈ ℂPreHil → ( 𝐹 ∈ CMetSp ↔ ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) ) |
| 14 | 1 2 | cphsubrg | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 15 | cphlvec | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec ) | |
| 16 | 1 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 17 | 15 16 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing ) |
| 18 | 12 17 | eqeltrrd | ⊢ ( 𝑊 ∈ ℂPreHil → ( ℂfld ↾s 𝐾 ) ∈ DivRing ) |
| 19 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
| 20 | 19 | cncdrg | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ∧ ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) → 𝐾 ∈ { ℝ , ℂ } ) |
| 21 | 20 | 3expia | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ) → ( ( ℂfld ↾s 𝐾 ) ∈ CMetSp → 𝐾 ∈ { ℝ , ℂ } ) ) |
| 22 | 14 18 21 | syl2anc | ⊢ ( 𝑊 ∈ ℂPreHil → ( ( ℂfld ↾s 𝐾 ) ∈ CMetSp → 𝐾 ∈ { ℝ , ℂ } ) ) |
| 23 | elpri | ⊢ ( 𝐾 ∈ { ℝ , ℂ } → ( 𝐾 = ℝ ∨ 𝐾 = ℂ ) ) | |
| 24 | oveq2 | ⊢ ( 𝐾 = ℝ → ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s ℝ ) ) | |
| 25 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 26 | 25 | recld2 | ⊢ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
| 27 | cncms | ⊢ ℂfld ∈ CMetSp | |
| 28 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 29 | eqid | ⊢ ( ℂfld ↾s ℝ ) = ( ℂfld ↾s ℝ ) | |
| 30 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 31 | 29 30 25 | cmsss | ⊢ ( ( ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ ) → ( ( ℂfld ↾s ℝ ) ∈ CMetSp ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) |
| 32 | 27 28 31 | mp2an | ⊢ ( ( ℂfld ↾s ℝ ) ∈ CMetSp ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 33 | 26 32 | mpbir | ⊢ ( ℂfld ↾s ℝ ) ∈ CMetSp |
| 34 | 24 33 | eqeltrdi | ⊢ ( 𝐾 = ℝ → ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) |
| 35 | oveq2 | ⊢ ( 𝐾 = ℂ → ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s ℂ ) ) | |
| 36 | 30 | ressid | ⊢ ( ℂfld ∈ CMetSp → ( ℂfld ↾s ℂ ) = ℂfld ) |
| 37 | 27 36 | ax-mp | ⊢ ( ℂfld ↾s ℂ ) = ℂfld |
| 38 | 37 27 | eqeltri | ⊢ ( ℂfld ↾s ℂ ) ∈ CMetSp |
| 39 | 35 38 | eqeltrdi | ⊢ ( 𝐾 = ℂ → ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) |
| 40 | 34 39 | jaoi | ⊢ ( ( 𝐾 = ℝ ∨ 𝐾 = ℂ ) → ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) |
| 41 | 23 40 | syl | ⊢ ( 𝐾 ∈ { ℝ , ℂ } → ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) |
| 42 | 22 41 | impbid1 | ⊢ ( 𝑊 ∈ ℂPreHil → ( ( ℂfld ↾s 𝐾 ) ∈ CMetSp ↔ 𝐾 ∈ { ℝ , ℂ } ) ) |
| 43 | 13 42 | bitrd | ⊢ ( 𝑊 ∈ ℂPreHil → ( 𝐹 ∈ CMetSp ↔ 𝐾 ∈ { ℝ , ℂ } ) ) |
| 44 | 43 | anbi2d | ⊢ ( 𝑊 ∈ ℂPreHil → ( ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ↔ ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ) ) |
| 45 | 11 44 | bitrd | ⊢ ( 𝑊 ∈ ℂPreHil → ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ) ) |
| 46 | 45 | pm5.32ri | ⊢ ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ↔ ( ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ∧ 𝑊 ∈ ℂPreHil ) ) |
| 47 | 4 5 46 | 3bitr4ri | ⊢ ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ↔ ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) ) |
| 48 | 3 47 | bitri | ⊢ ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) ) |