This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert space is a complete subcomplex pre-Hilbert space over RR or CC . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlress.f | |- F = ( Scalar ` W ) |
|
| hlress.k | |- K = ( Base ` F ) |
||
| Assertion | ishl2 | |- ( W e. CHil <-> ( W e. CMetSp /\ W e. CPreHil /\ K e. { RR , CC } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlress.f | |- F = ( Scalar ` W ) |
|
| 2 | hlress.k | |- K = ( Base ` F ) |
|
| 3 | ishl | |- ( W e. CHil <-> ( W e. Ban /\ W e. CPreHil ) ) |
|
| 4 | df-3an | |- ( ( W e. CMetSp /\ K e. { RR , CC } /\ W e. CPreHil ) <-> ( ( W e. CMetSp /\ K e. { RR , CC } ) /\ W e. CPreHil ) ) |
|
| 5 | 3ancomb | |- ( ( W e. CMetSp /\ W e. CPreHil /\ K e. { RR , CC } ) <-> ( W e. CMetSp /\ K e. { RR , CC } /\ W e. CPreHil ) ) |
|
| 6 | cphnvc | |- ( W e. CPreHil -> W e. NrmVec ) |
|
| 7 | 1 | isbn | |- ( W e. Ban <-> ( W e. NrmVec /\ W e. CMetSp /\ F e. CMetSp ) ) |
| 8 | 3anass | |- ( ( W e. NrmVec /\ W e. CMetSp /\ F e. CMetSp ) <-> ( W e. NrmVec /\ ( W e. CMetSp /\ F e. CMetSp ) ) ) |
|
| 9 | 7 8 | bitri | |- ( W e. Ban <-> ( W e. NrmVec /\ ( W e. CMetSp /\ F e. CMetSp ) ) ) |
| 10 | 9 | baib | |- ( W e. NrmVec -> ( W e. Ban <-> ( W e. CMetSp /\ F e. CMetSp ) ) ) |
| 11 | 6 10 | syl | |- ( W e. CPreHil -> ( W e. Ban <-> ( W e. CMetSp /\ F e. CMetSp ) ) ) |
| 12 | 1 2 | cphsca | |- ( W e. CPreHil -> F = ( CCfld |`s K ) ) |
| 13 | 12 | eleq1d | |- ( W e. CPreHil -> ( F e. CMetSp <-> ( CCfld |`s K ) e. CMetSp ) ) |
| 14 | 1 2 | cphsubrg | |- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
| 15 | cphlvec | |- ( W e. CPreHil -> W e. LVec ) |
|
| 16 | 1 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) |
| 17 | 15 16 | syl | |- ( W e. CPreHil -> F e. DivRing ) |
| 18 | 12 17 | eqeltrrd | |- ( W e. CPreHil -> ( CCfld |`s K ) e. DivRing ) |
| 19 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
| 20 | 19 | cncdrg | |- ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) -> K e. { RR , CC } ) |
| 21 | 20 | 3expia | |- ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing ) -> ( ( CCfld |`s K ) e. CMetSp -> K e. { RR , CC } ) ) |
| 22 | 14 18 21 | syl2anc | |- ( W e. CPreHil -> ( ( CCfld |`s K ) e. CMetSp -> K e. { RR , CC } ) ) |
| 23 | elpri | |- ( K e. { RR , CC } -> ( K = RR \/ K = CC ) ) |
|
| 24 | oveq2 | |- ( K = RR -> ( CCfld |`s K ) = ( CCfld |`s RR ) ) |
|
| 25 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 26 | 25 | recld2 | |- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 27 | cncms | |- CCfld e. CMetSp |
|
| 28 | ax-resscn | |- RR C_ CC |
|
| 29 | eqid | |- ( CCfld |`s RR ) = ( CCfld |`s RR ) |
|
| 30 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 31 | 29 30 25 | cmsss | |- ( ( CCfld e. CMetSp /\ RR C_ CC ) -> ( ( CCfld |`s RR ) e. CMetSp <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) |
| 32 | 27 28 31 | mp2an | |- ( ( CCfld |`s RR ) e. CMetSp <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 33 | 26 32 | mpbir | |- ( CCfld |`s RR ) e. CMetSp |
| 34 | 24 33 | eqeltrdi | |- ( K = RR -> ( CCfld |`s K ) e. CMetSp ) |
| 35 | oveq2 | |- ( K = CC -> ( CCfld |`s K ) = ( CCfld |`s CC ) ) |
|
| 36 | 30 | ressid | |- ( CCfld e. CMetSp -> ( CCfld |`s CC ) = CCfld ) |
| 37 | 27 36 | ax-mp | |- ( CCfld |`s CC ) = CCfld |
| 38 | 37 27 | eqeltri | |- ( CCfld |`s CC ) e. CMetSp |
| 39 | 35 38 | eqeltrdi | |- ( K = CC -> ( CCfld |`s K ) e. CMetSp ) |
| 40 | 34 39 | jaoi | |- ( ( K = RR \/ K = CC ) -> ( CCfld |`s K ) e. CMetSp ) |
| 41 | 23 40 | syl | |- ( K e. { RR , CC } -> ( CCfld |`s K ) e. CMetSp ) |
| 42 | 22 41 | impbid1 | |- ( W e. CPreHil -> ( ( CCfld |`s K ) e. CMetSp <-> K e. { RR , CC } ) ) |
| 43 | 13 42 | bitrd | |- ( W e. CPreHil -> ( F e. CMetSp <-> K e. { RR , CC } ) ) |
| 44 | 43 | anbi2d | |- ( W e. CPreHil -> ( ( W e. CMetSp /\ F e. CMetSp ) <-> ( W e. CMetSp /\ K e. { RR , CC } ) ) ) |
| 45 | 11 44 | bitrd | |- ( W e. CPreHil -> ( W e. Ban <-> ( W e. CMetSp /\ K e. { RR , CC } ) ) ) |
| 46 | 45 | pm5.32ri | |- ( ( W e. Ban /\ W e. CPreHil ) <-> ( ( W e. CMetSp /\ K e. { RR , CC } ) /\ W e. CPreHil ) ) |
| 47 | 4 5 46 | 3bitr4ri | |- ( ( W e. Ban /\ W e. CPreHil ) <-> ( W e. CMetSp /\ W e. CPreHil /\ K e. { RR , CC } ) ) |
| 48 | 3 47 | bitri | |- ( W e. CHil <-> ( W e. CMetSp /\ W e. CPreHil /\ K e. { RR , CC } ) ) |