This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real numbers are a closed set in the topology on CC . (Contributed by Mario Carneiro, 17-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | recld2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | recld2 | ⊢ ℝ ∈ ( Clsd ‘ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | difss | ⊢ ( ℂ ∖ ℝ ) ⊆ ℂ | |
| 3 | eldifi | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → 𝑥 ∈ ℂ ) | |
| 4 | 3 | imcld | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 5 | 4 | recnd | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ℑ ‘ 𝑥 ) ∈ ℂ ) |
| 6 | eldifn | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ¬ 𝑥 ∈ ℝ ) | |
| 7 | reim0b | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) | |
| 8 | 3 7 | syl | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) |
| 9 | 8 | necon3bbid | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ¬ 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) ≠ 0 ) ) |
| 10 | 6 9 | mpbid | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ℑ ‘ 𝑥 ) ≠ 0 ) |
| 11 | 5 10 | absrpcld | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ+ ) |
| 12 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 13 | 5 | abscld | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
| 14 | 13 | rexrd | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ* ) |
| 15 | elbl | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑥 ∈ ℂ ∧ ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) | |
| 16 | 12 3 14 15 | mp3an2i | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( 𝑦 ∈ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) |
| 17 | simprl | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) → 𝑦 ∈ ℂ ) | |
| 18 | 3 | adantr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 19 | simpr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 20 | 19 | recnd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 21 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 22 | 21 | cnmetdval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 23 | 18 20 22 | syl2anc | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 24 | 5 | adantr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝑥 ) ∈ ℂ ) |
| 25 | 24 | abscld | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
| 26 | 18 20 | subcld | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
| 27 | 26 | abscld | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ ) |
| 28 | 18 20 | imsubd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝑥 − 𝑦 ) ) = ( ( ℑ ‘ 𝑥 ) − ( ℑ ‘ 𝑦 ) ) ) |
| 29 | reim0 | ⊢ ( 𝑦 ∈ ℝ → ( ℑ ‘ 𝑦 ) = 0 ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝑦 ) = 0 ) |
| 31 | 30 | oveq2d | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) − ( ℑ ‘ 𝑦 ) ) = ( ( ℑ ‘ 𝑥 ) − 0 ) ) |
| 32 | 24 | subid1d | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) − 0 ) = ( ℑ ‘ 𝑥 ) ) |
| 33 | 28 31 32 | 3eqtrd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝑥 − 𝑦 ) ) = ( ℑ ‘ 𝑥 ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝑥 − 𝑦 ) ) ) = ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) |
| 35 | absimle | ⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝑥 − 𝑦 ) ) ) ≤ ( abs ‘ ( 𝑥 − 𝑦 ) ) ) | |
| 36 | 26 35 | syl | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝑥 − 𝑦 ) ) ) ≤ ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 37 | 34 36 | eqbrtrrd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) ≤ ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 38 | 25 27 37 | lensymd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ¬ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) |
| 39 | 23 38 | eqnbrtrd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℝ ) → ¬ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) |
| 40 | 39 | ex | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( 𝑦 ∈ ℝ → ¬ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) |
| 41 | 40 | con2d | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) → ¬ 𝑦 ∈ ℝ ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) → ¬ 𝑦 ∈ ℝ ) ) |
| 43 | 42 | impr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) → ¬ 𝑦 ∈ ℝ ) |
| 44 | 17 43 | eldifd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ ℝ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) → 𝑦 ∈ ( ℂ ∖ ℝ ) ) |
| 45 | 44 | ex | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( ( 𝑦 ∈ ℂ ∧ ( 𝑥 ( abs ∘ − ) 𝑦 ) < ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) → 𝑦 ∈ ( ℂ ∖ ℝ ) ) ) |
| 46 | 16 45 | sylbid | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( 𝑦 ∈ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) → 𝑦 ∈ ( ℂ ∖ ℝ ) ) ) |
| 47 | 46 | ssrdv | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ⊆ ( ℂ ∖ ℝ ) ) |
| 48 | oveq2 | ⊢ ( 𝑦 = ( abs ‘ ( ℑ ‘ 𝑥 ) ) → ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) = ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ) | |
| 49 | 48 | sseq1d | ⊢ ( 𝑦 = ( abs ‘ ( ℑ ‘ 𝑥 ) ) → ( ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) ↔ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ⊆ ( ℂ ∖ ℝ ) ) ) |
| 50 | 49 | rspcev | ⊢ ( ( ( abs ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) ( abs ‘ ( ℑ ‘ 𝑥 ) ) ) ⊆ ( ℂ ∖ ℝ ) ) → ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) ) |
| 51 | 11 47 50 | syl2anc | ⊢ ( 𝑥 ∈ ( ℂ ∖ ℝ ) → ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) ) |
| 52 | 51 | rgen | ⊢ ∀ 𝑥 ∈ ( ℂ ∖ ℝ ) ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) |
| 53 | 1 | cnfldtopn | ⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 54 | 53 | elmopn2 | ⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( ( ℂ ∖ ℝ ) ∈ 𝐽 ↔ ( ( ℂ ∖ ℝ ) ⊆ ℂ ∧ ∀ 𝑥 ∈ ( ℂ ∖ ℝ ) ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) ) ) ) |
| 55 | 12 54 | ax-mp | ⊢ ( ( ℂ ∖ ℝ ) ∈ 𝐽 ↔ ( ( ℂ ∖ ℝ ) ⊆ ℂ ∧ ∀ 𝑥 ∈ ( ℂ ∖ ℝ ) ∃ 𝑦 ∈ ℝ+ ( 𝑥 ( ball ‘ ( abs ∘ − ) ) 𝑦 ) ⊆ ( ℂ ∖ ℝ ) ) ) |
| 56 | 2 52 55 | mpbir2an | ⊢ ( ℂ ∖ ℝ ) ∈ 𝐽 |
| 57 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 58 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 59 | 53 | mopnuni | ⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ℂ = ∪ 𝐽 ) |
| 60 | 12 59 | ax-mp | ⊢ ℂ = ∪ 𝐽 |
| 61 | 60 | iscld2 | ⊢ ( ( 𝐽 ∈ Top ∧ ℝ ⊆ ℂ ) → ( ℝ ∈ ( Clsd ‘ 𝐽 ) ↔ ( ℂ ∖ ℝ ) ∈ 𝐽 ) ) |
| 62 | 57 58 61 | mp2an | ⊢ ( ℝ ∈ ( Clsd ‘ 𝐽 ) ↔ ( ℂ ∖ ℝ ) ∈ 𝐽 ) |
| 63 | 56 62 | mpbir | ⊢ ℝ ∈ ( Clsd ‘ 𝐽 ) |