This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of complex numbers is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncms | ⊢ ℂfld ∈ CMetSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldms | ⊢ ℂfld ∈ MetSp | |
| 2 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 3 | 2 | cncmet | ⊢ ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) |
| 4 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 5 | cnmet | ⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) | |
| 6 | metf | ⊢ ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) | |
| 7 | 5 6 | ax-mp | ⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
| 8 | ffn | ⊢ ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) | |
| 9 | fnresdm | ⊢ ( ( abs ∘ − ) Fn ( ℂ × ℂ ) → ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) ) | |
| 10 | 7 8 9 | mp2b | ⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) |
| 11 | cnfldds | ⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) | |
| 12 | 11 | reseq1i | ⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
| 13 | 10 12 | eqtr3i | ⊢ ( abs ∘ − ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
| 14 | 4 13 | iscms | ⊢ ( ℂfld ∈ CMetSp ↔ ( ℂfld ∈ MetSp ∧ ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) ) ) |
| 15 | 1 3 14 | mpbir2an | ⊢ ℂfld ∈ CMetSp |