This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin1-2 | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ V ) | |
| 2 | elex | ⊢ ( 𝒫 𝒫 𝐴 ∈ FinIV → 𝒫 𝒫 𝐴 ∈ V ) | |
| 3 | pwexb | ⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) | |
| 4 | pwexb | ⊢ ( 𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V ) | |
| 5 | 3 4 | bitri | ⊢ ( 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V ) |
| 6 | 2 5 | sylibr | ⊢ ( 𝒫 𝒫 𝐴 ∈ FinIV → 𝐴 ∈ V ) |
| 7 | ominf | ⊢ ¬ ω ∈ Fin | |
| 8 | pwfi | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) | |
| 9 | pwfi | ⊢ ( 𝒫 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin ) | |
| 10 | 8 9 | bitri | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin ) |
| 11 | domfi | ⊢ ( ( 𝒫 𝒫 𝐴 ∈ Fin ∧ ω ≼ 𝒫 𝒫 𝐴 ) → ω ∈ Fin ) | |
| 12 | 11 | expcom | ⊢ ( ω ≼ 𝒫 𝒫 𝐴 → ( 𝒫 𝒫 𝐴 ∈ Fin → ω ∈ Fin ) ) |
| 13 | 10 12 | biimtrid | ⊢ ( ω ≼ 𝒫 𝒫 𝐴 → ( 𝐴 ∈ Fin → ω ∈ Fin ) ) |
| 14 | 7 13 | mtoi | ⊢ ( ω ≼ 𝒫 𝒫 𝐴 → ¬ 𝐴 ∈ Fin ) |
| 15 | fineqvlem | ⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝒫 𝒫 𝐴 ) | |
| 16 | 15 | ex | ⊢ ( 𝐴 ∈ V → ( ¬ 𝐴 ∈ Fin → ω ≼ 𝒫 𝒫 𝐴 ) ) |
| 17 | 14 16 | impbid2 | ⊢ ( 𝐴 ∈ V → ( ω ≼ 𝒫 𝒫 𝐴 ↔ ¬ 𝐴 ∈ Fin ) ) |
| 18 | 17 | con2bid | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ Fin ↔ ¬ ω ≼ 𝒫 𝒫 𝐴 ) ) |
| 19 | isfin4-2 | ⊢ ( 𝒫 𝒫 𝐴 ∈ V → ( 𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴 ) ) | |
| 20 | 5 19 | sylbi | ⊢ ( 𝐴 ∈ V → ( 𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴 ) ) |
| 21 | 18 20 | bitr4d | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV ) ) |
| 22 | 1 6 21 | pm5.21nii | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV ) |