This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin1-2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ||
| 2 | elex | ||
| 3 | pwexb | ||
| 4 | pwexb | ||
| 5 | 3 4 | bitri | |
| 6 | 2 5 | sylibr | |
| 7 | ominf | ||
| 8 | pwfi | ||
| 9 | pwfi | ||
| 10 | 8 9 | bitri | |
| 11 | domfi | ||
| 12 | 11 | expcom | |
| 13 | 10 12 | biimtrid | |
| 14 | 7 13 | mtoi | |
| 15 | fineqvlem | ||
| 16 | 15 | ex | |
| 17 | 14 16 | impbid2 | |
| 18 | 17 | con2bid | |
| 19 | isfin4-2 | ||
| 20 | 5 19 | sylbi | |
| 21 | 18 20 | bitr4d | |
| 22 | 1 6 21 | pm5.21nii |