This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin1-2 | |- ( A e. Fin <-> ~P ~P A e. Fin4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. Fin -> A e. _V ) |
|
| 2 | elex | |- ( ~P ~P A e. Fin4 -> ~P ~P A e. _V ) |
|
| 3 | pwexb | |- ( A e. _V <-> ~P A e. _V ) |
|
| 4 | pwexb | |- ( ~P A e. _V <-> ~P ~P A e. _V ) |
|
| 5 | 3 4 | bitri | |- ( A e. _V <-> ~P ~P A e. _V ) |
| 6 | 2 5 | sylibr | |- ( ~P ~P A e. Fin4 -> A e. _V ) |
| 7 | ominf | |- -. _om e. Fin |
|
| 8 | pwfi | |- ( A e. Fin <-> ~P A e. Fin ) |
|
| 9 | pwfi | |- ( ~P A e. Fin <-> ~P ~P A e. Fin ) |
|
| 10 | 8 9 | bitri | |- ( A e. Fin <-> ~P ~P A e. Fin ) |
| 11 | domfi | |- ( ( ~P ~P A e. Fin /\ _om ~<_ ~P ~P A ) -> _om e. Fin ) |
|
| 12 | 11 | expcom | |- ( _om ~<_ ~P ~P A -> ( ~P ~P A e. Fin -> _om e. Fin ) ) |
| 13 | 10 12 | biimtrid | |- ( _om ~<_ ~P ~P A -> ( A e. Fin -> _om e. Fin ) ) |
| 14 | 7 13 | mtoi | |- ( _om ~<_ ~P ~P A -> -. A e. Fin ) |
| 15 | fineqvlem | |- ( ( A e. _V /\ -. A e. Fin ) -> _om ~<_ ~P ~P A ) |
|
| 16 | 15 | ex | |- ( A e. _V -> ( -. A e. Fin -> _om ~<_ ~P ~P A ) ) |
| 17 | 14 16 | impbid2 | |- ( A e. _V -> ( _om ~<_ ~P ~P A <-> -. A e. Fin ) ) |
| 18 | 17 | con2bid | |- ( A e. _V -> ( A e. Fin <-> -. _om ~<_ ~P ~P A ) ) |
| 19 | isfin4-2 | |- ( ~P ~P A e. _V -> ( ~P ~P A e. Fin4 <-> -. _om ~<_ ~P ~P A ) ) |
|
| 20 | 5 19 | sylbi | |- ( A e. _V -> ( ~P ~P A e. Fin4 <-> -. _om ~<_ ~P ~P A ) ) |
| 21 | 18 20 | bitr4d | |- ( A e. _V -> ( A e. Fin <-> ~P ~P A e. Fin4 ) ) |
| 22 | 1 6 21 | pm5.21nii | |- ( A e. Fin <-> ~P ~P A e. Fin4 ) |