This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| Assertion | isf34lem5 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∩ 𝑋 ) = ∪ ( 𝐹 “ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | imassrn | ⊢ ( 𝐹 “ 𝑋 ) ⊆ ran 𝐹 | |
| 3 | 1 | isf34lem2 | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
| 5 | 4 | frnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ran 𝐹 ⊆ 𝒫 𝐴 ) |
| 6 | 2 5 | sstrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 “ 𝑋 ) ⊆ 𝒫 𝐴 ) |
| 7 | simprl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → 𝑋 ⊆ 𝒫 𝐴 ) | |
| 8 | 4 | fdmd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → dom 𝐹 = 𝒫 𝐴 ) |
| 9 | 7 8 | sseqtrrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → 𝑋 ⊆ dom 𝐹 ) |
| 10 | sseqin2 | ⊢ ( 𝑋 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑋 ) = 𝑋 ) | |
| 11 | 9 10 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( dom 𝐹 ∩ 𝑋 ) = 𝑋 ) |
| 12 | simprr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → 𝑋 ≠ ∅ ) | |
| 13 | 11 12 | eqnetrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( dom 𝐹 ∩ 𝑋 ) ≠ ∅ ) |
| 14 | imadisj | ⊢ ( ( 𝐹 “ 𝑋 ) = ∅ ↔ ( dom 𝐹 ∩ 𝑋 ) = ∅ ) | |
| 15 | 14 | necon3bii | ⊢ ( ( 𝐹 “ 𝑋 ) ≠ ∅ ↔ ( dom 𝐹 ∩ 𝑋 ) ≠ ∅ ) |
| 16 | 13 15 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 “ 𝑋 ) ≠ ∅ ) |
| 17 | 6 16 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ( 𝐹 “ 𝑋 ) ⊆ 𝒫 𝐴 ∧ ( 𝐹 “ 𝑋 ) ≠ ∅ ) ) |
| 18 | 1 | isf34lem4 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝐹 “ 𝑋 ) ⊆ 𝒫 𝐴 ∧ ( 𝐹 “ 𝑋 ) ≠ ∅ ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) = ∩ ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) ) |
| 19 | 17 18 | syldan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) = ∩ ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) ) |
| 20 | 1 | isf34lem3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) = 𝑋 ) |
| 21 | 20 | adantrr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) = 𝑋 ) |
| 22 | 21 | inteqd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ∩ ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) = ∩ 𝑋 ) |
| 23 | 19 22 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) = ∩ 𝑋 ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) = ( 𝐹 ‘ ∩ 𝑋 ) ) |
| 25 | 1 | compsscnv | ⊢ ◡ 𝐹 = 𝐹 |
| 26 | 25 | fveq1i | ⊢ ( ◡ 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) = ( 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) |
| 27 | 1 | compssiso | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) ) |
| 28 | isof1o | ⊢ ( 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) → 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ) | |
| 29 | 27 28 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ) |
| 30 | sspwuni | ⊢ ( ( 𝐹 “ 𝑋 ) ⊆ 𝒫 𝐴 ↔ ∪ ( 𝐹 “ 𝑋 ) ⊆ 𝐴 ) | |
| 31 | 6 30 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ∪ ( 𝐹 “ 𝑋 ) ⊆ 𝐴 ) |
| 32 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( ∪ ( 𝐹 “ 𝑋 ) ∈ 𝒫 𝐴 ↔ ∪ ( 𝐹 “ 𝑋 ) ⊆ 𝐴 ) ) | |
| 33 | 32 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ∪ ( 𝐹 “ 𝑋 ) ∈ 𝒫 𝐴 ↔ ∪ ( 𝐹 “ 𝑋 ) ⊆ 𝐴 ) ) |
| 34 | 31 33 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ∪ ( 𝐹 “ 𝑋 ) ∈ 𝒫 𝐴 ) |
| 35 | f1ocnvfv1 | ⊢ ( ( 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ∧ ∪ ( 𝐹 “ 𝑋 ) ∈ 𝒫 𝐴 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) = ∪ ( 𝐹 “ 𝑋 ) ) | |
| 36 | 29 34 35 | syl2an2r | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) = ∪ ( 𝐹 “ 𝑋 ) ) |
| 37 | 26 36 | eqtr3id | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) = ∪ ( 𝐹 “ 𝑋 ) ) |
| 38 | 24 37 | eqtr3d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∩ 𝑋 ) = ∪ ( 𝐹 “ 𝑋 ) ) |