This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| Assertion | isf34lem7 | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> U. ran G e. ran G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| 2 | 1 | isf34lem2 | |- ( A e. Fin3 -> F : ~P A --> ~P A ) |
| 3 | 2 | adantr | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> F : ~P A --> ~P A ) |
| 4 | 3 | 3adant3 | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> F : ~P A --> ~P A ) |
| 5 | 4 | ffnd | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> F Fn ~P A ) |
| 6 | imassrn | |- ( F " ran G ) C_ ran F |
|
| 7 | 3 | frnd | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ran F C_ ~P A ) |
| 8 | 7 | 3adant3 | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> ran F C_ ~P A ) |
| 9 | 6 8 | sstrid | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> ( F " ran G ) C_ ~P A ) |
| 10 | simp1 | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> A e. Fin3 ) |
|
| 11 | fco | |- ( ( F : ~P A --> ~P A /\ G : _om --> ~P A ) -> ( F o. G ) : _om --> ~P A ) |
|
| 12 | 2 11 | sylan | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F o. G ) : _om --> ~P A ) |
| 13 | 12 | 3adant3 | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> ( F o. G ) : _om --> ~P A ) |
| 14 | sscon | |- ( ( G ` y ) C_ ( G ` suc y ) -> ( A \ ( G ` suc y ) ) C_ ( A \ ( G ` y ) ) ) |
|
| 15 | simpr | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> G : _om --> ~P A ) |
|
| 16 | peano2 | |- ( y e. _om -> suc y e. _om ) |
|
| 17 | fvco3 | |- ( ( G : _om --> ~P A /\ suc y e. _om ) -> ( ( F o. G ) ` suc y ) = ( F ` ( G ` suc y ) ) ) |
|
| 18 | 15 16 17 | syl2an | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( F o. G ) ` suc y ) = ( F ` ( G ` suc y ) ) ) |
| 19 | simpll | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> A e. Fin3 ) |
|
| 20 | ffvelcdm | |- ( ( G : _om --> ~P A /\ suc y e. _om ) -> ( G ` suc y ) e. ~P A ) |
|
| 21 | 15 16 20 | syl2an | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( G ` suc y ) e. ~P A ) |
| 22 | 21 | elpwid | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( G ` suc y ) C_ A ) |
| 23 | 1 | isf34lem1 | |- ( ( A e. Fin3 /\ ( G ` suc y ) C_ A ) -> ( F ` ( G ` suc y ) ) = ( A \ ( G ` suc y ) ) ) |
| 24 | 19 22 23 | syl2anc | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( F ` ( G ` suc y ) ) = ( A \ ( G ` suc y ) ) ) |
| 25 | 18 24 | eqtrd | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( F o. G ) ` suc y ) = ( A \ ( G ` suc y ) ) ) |
| 26 | fvco3 | |- ( ( G : _om --> ~P A /\ y e. _om ) -> ( ( F o. G ) ` y ) = ( F ` ( G ` y ) ) ) |
|
| 27 | 26 | adantll | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( F o. G ) ` y ) = ( F ` ( G ` y ) ) ) |
| 28 | ffvelcdm | |- ( ( G : _om --> ~P A /\ y e. _om ) -> ( G ` y ) e. ~P A ) |
|
| 29 | 28 | adantll | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( G ` y ) e. ~P A ) |
| 30 | 29 | elpwid | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( G ` y ) C_ A ) |
| 31 | 1 | isf34lem1 | |- ( ( A e. Fin3 /\ ( G ` y ) C_ A ) -> ( F ` ( G ` y ) ) = ( A \ ( G ` y ) ) ) |
| 32 | 19 30 31 | syl2anc | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( F ` ( G ` y ) ) = ( A \ ( G ` y ) ) ) |
| 33 | 27 32 | eqtrd | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( F o. G ) ` y ) = ( A \ ( G ` y ) ) ) |
| 34 | 25 33 | sseq12d | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( ( F o. G ) ` suc y ) C_ ( ( F o. G ) ` y ) <-> ( A \ ( G ` suc y ) ) C_ ( A \ ( G ` y ) ) ) ) |
| 35 | 14 34 | imbitrrid | |- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( G ` y ) C_ ( G ` suc y ) -> ( ( F o. G ) ` suc y ) C_ ( ( F o. G ) ` y ) ) ) |
| 36 | 35 | ralimdva | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( A. y e. _om ( G ` y ) C_ ( G ` suc y ) -> A. y e. _om ( ( F o. G ) ` suc y ) C_ ( ( F o. G ) ` y ) ) ) |
| 37 | 36 | 3impia | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> A. y e. _om ( ( F o. G ) ` suc y ) C_ ( ( F o. G ) ` y ) ) |
| 38 | fin33i | |- ( ( A e. Fin3 /\ ( F o. G ) : _om --> ~P A /\ A. y e. _om ( ( F o. G ) ` suc y ) C_ ( ( F o. G ) ` y ) ) -> |^| ran ( F o. G ) e. ran ( F o. G ) ) |
|
| 39 | 10 13 37 38 | syl3anc | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> |^| ran ( F o. G ) e. ran ( F o. G ) ) |
| 40 | rnco2 | |- ran ( F o. G ) = ( F " ran G ) |
|
| 41 | 40 | inteqi | |- |^| ran ( F o. G ) = |^| ( F " ran G ) |
| 42 | 39 41 40 | 3eltr3g | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> |^| ( F " ran G ) e. ( F " ran G ) ) |
| 43 | fnfvima | |- ( ( F Fn ~P A /\ ( F " ran G ) C_ ~P A /\ |^| ( F " ran G ) e. ( F " ran G ) ) -> ( F ` |^| ( F " ran G ) ) e. ( F " ( F " ran G ) ) ) |
|
| 44 | 5 9 42 43 | syl3anc | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> ( F ` |^| ( F " ran G ) ) e. ( F " ( F " ran G ) ) ) |
| 45 | simpl | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> A e. Fin3 ) |
|
| 46 | 6 7 | sstrid | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F " ran G ) C_ ~P A ) |
| 47 | incom | |- ( dom F i^i ran G ) = ( ran G i^i dom F ) |
|
| 48 | frn | |- ( G : _om --> ~P A -> ran G C_ ~P A ) |
|
| 49 | 48 | adantl | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ran G C_ ~P A ) |
| 50 | 3 | fdmd | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> dom F = ~P A ) |
| 51 | 49 50 | sseqtrrd | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ran G C_ dom F ) |
| 52 | dfss2 | |- ( ran G C_ dom F <-> ( ran G i^i dom F ) = ran G ) |
|
| 53 | 51 52 | sylib | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( ran G i^i dom F ) = ran G ) |
| 54 | 47 53 | eqtrid | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( dom F i^i ran G ) = ran G ) |
| 55 | fdm | |- ( G : _om --> ~P A -> dom G = _om ) |
|
| 56 | 55 | adantl | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> dom G = _om ) |
| 57 | peano1 | |- (/) e. _om |
|
| 58 | ne0i | |- ( (/) e. _om -> _om =/= (/) ) |
|
| 59 | 57 58 | mp1i | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> _om =/= (/) ) |
| 60 | 56 59 | eqnetrd | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> dom G =/= (/) ) |
| 61 | dm0rn0 | |- ( dom G = (/) <-> ran G = (/) ) |
|
| 62 | 61 | necon3bii | |- ( dom G =/= (/) <-> ran G =/= (/) ) |
| 63 | 60 62 | sylib | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ran G =/= (/) ) |
| 64 | 54 63 | eqnetrd | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( dom F i^i ran G ) =/= (/) ) |
| 65 | imadisj | |- ( ( F " ran G ) = (/) <-> ( dom F i^i ran G ) = (/) ) |
|
| 66 | 65 | necon3bii | |- ( ( F " ran G ) =/= (/) <-> ( dom F i^i ran G ) =/= (/) ) |
| 67 | 64 66 | sylibr | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F " ran G ) =/= (/) ) |
| 68 | 1 | isf34lem5 | |- ( ( A e. Fin3 /\ ( ( F " ran G ) C_ ~P A /\ ( F " ran G ) =/= (/) ) ) -> ( F ` |^| ( F " ran G ) ) = U. ( F " ( F " ran G ) ) ) |
| 69 | 45 46 67 68 | syl12anc | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F ` |^| ( F " ran G ) ) = U. ( F " ( F " ran G ) ) ) |
| 70 | 1 | isf34lem3 | |- ( ( A e. Fin3 /\ ran G C_ ~P A ) -> ( F " ( F " ran G ) ) = ran G ) |
| 71 | 45 49 70 | syl2anc | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F " ( F " ran G ) ) = ran G ) |
| 72 | 71 | unieqd | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> U. ( F " ( F " ran G ) ) = U. ran G ) |
| 73 | 69 72 | eqtrd | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F ` |^| ( F " ran G ) ) = U. ran G ) |
| 74 | 73 71 | eleq12d | |- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( ( F ` |^| ( F " ran G ) ) e. ( F " ( F " ran G ) ) <-> U. ran G e. ran G ) ) |
| 75 | 74 | 3adant3 | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> ( ( F ` |^| ( F " ran G ) ) e. ( F " ( F " ran G ) ) <-> U. ran G e. ran G ) ) |
| 76 | 44 75 | mpbid | |- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> U. ran G e. ran G ) |