This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| Assertion | isf34lem5 | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( F ` |^| X ) = U. ( F " X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| 2 | imassrn | |- ( F " X ) C_ ran F |
|
| 3 | 1 | isf34lem2 | |- ( A e. V -> F : ~P A --> ~P A ) |
| 4 | 3 | adantr | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> F : ~P A --> ~P A ) |
| 5 | 4 | frnd | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ran F C_ ~P A ) |
| 6 | 2 5 | sstrid | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( F " X ) C_ ~P A ) |
| 7 | simprl | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> X C_ ~P A ) |
|
| 8 | 4 | fdmd | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> dom F = ~P A ) |
| 9 | 7 8 | sseqtrrd | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> X C_ dom F ) |
| 10 | sseqin2 | |- ( X C_ dom F <-> ( dom F i^i X ) = X ) |
|
| 11 | 9 10 | sylib | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( dom F i^i X ) = X ) |
| 12 | simprr | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> X =/= (/) ) |
|
| 13 | 11 12 | eqnetrd | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( dom F i^i X ) =/= (/) ) |
| 14 | imadisj | |- ( ( F " X ) = (/) <-> ( dom F i^i X ) = (/) ) |
|
| 15 | 14 | necon3bii | |- ( ( F " X ) =/= (/) <-> ( dom F i^i X ) =/= (/) ) |
| 16 | 13 15 | sylibr | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( F " X ) =/= (/) ) |
| 17 | 6 16 | jca | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( ( F " X ) C_ ~P A /\ ( F " X ) =/= (/) ) ) |
| 18 | 1 | isf34lem4 | |- ( ( A e. V /\ ( ( F " X ) C_ ~P A /\ ( F " X ) =/= (/) ) ) -> ( F ` U. ( F " X ) ) = |^| ( F " ( F " X ) ) ) |
| 19 | 17 18 | syldan | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( F ` U. ( F " X ) ) = |^| ( F " ( F " X ) ) ) |
| 20 | 1 | isf34lem3 | |- ( ( A e. V /\ X C_ ~P A ) -> ( F " ( F " X ) ) = X ) |
| 21 | 20 | adantrr | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( F " ( F " X ) ) = X ) |
| 22 | 21 | inteqd | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> |^| ( F " ( F " X ) ) = |^| X ) |
| 23 | 19 22 | eqtrd | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( F ` U. ( F " X ) ) = |^| X ) |
| 24 | 23 | fveq2d | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( F ` ( F ` U. ( F " X ) ) ) = ( F ` |^| X ) ) |
| 25 | 1 | compsscnv | |- `' F = F |
| 26 | 25 | fveq1i | |- ( `' F ` ( F ` U. ( F " X ) ) ) = ( F ` ( F ` U. ( F " X ) ) ) |
| 27 | 1 | compssiso | |- ( A e. V -> F Isom [C.] , `' [C.] ( ~P A , ~P A ) ) |
| 28 | isof1o | |- ( F Isom [C.] , `' [C.] ( ~P A , ~P A ) -> F : ~P A -1-1-onto-> ~P A ) |
|
| 29 | 27 28 | syl | |- ( A e. V -> F : ~P A -1-1-onto-> ~P A ) |
| 30 | sspwuni | |- ( ( F " X ) C_ ~P A <-> U. ( F " X ) C_ A ) |
|
| 31 | 6 30 | sylib | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> U. ( F " X ) C_ A ) |
| 32 | elpw2g | |- ( A e. V -> ( U. ( F " X ) e. ~P A <-> U. ( F " X ) C_ A ) ) |
|
| 33 | 32 | adantr | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( U. ( F " X ) e. ~P A <-> U. ( F " X ) C_ A ) ) |
| 34 | 31 33 | mpbird | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> U. ( F " X ) e. ~P A ) |
| 35 | f1ocnvfv1 | |- ( ( F : ~P A -1-1-onto-> ~P A /\ U. ( F " X ) e. ~P A ) -> ( `' F ` ( F ` U. ( F " X ) ) ) = U. ( F " X ) ) |
|
| 36 | 29 34 35 | syl2an2r | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( `' F ` ( F ` U. ( F " X ) ) ) = U. ( F " X ) ) |
| 37 | 26 36 | eqtr3id | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( F ` ( F ` U. ( F " X ) ) ) = U. ( F " X ) ) |
| 38 | 24 37 | eqtr3d | |- ( ( A e. V /\ ( X C_ ~P A /\ X =/= (/) ) ) -> ( F ` |^| X ) = U. ( F " X ) ) |