This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Directed sets may be defined in terms of finite subsets. Again, without nonemptiness we would need to restrict to nonempty subsets here. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drsbn0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| drsdirfi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | isdrs2 | ⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsbn0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | drsdirfi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | drsprs | ⊢ ( 𝐾 ∈ Dirset → 𝐾 ∈ Proset ) | |
| 4 | simpl | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝐾 ∈ Dirset ) | |
| 5 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) → 𝑥 ∈ 𝒫 𝐵 ) | |
| 6 | 5 | elpwid | ⊢ ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) → 𝑥 ⊆ 𝐵 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑥 ⊆ 𝐵 ) |
| 8 | elinel2 | ⊢ ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) → 𝑥 ∈ Fin ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 10 | 1 2 | drsdirfi | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ Fin ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) |
| 11 | 4 7 9 10 | syl3anc | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝐾 ∈ Dirset → ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) |
| 13 | 3 12 | jca | ⊢ ( 𝐾 ∈ Dirset → ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) ) |
| 14 | simpl | ⊢ ( ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) → 𝐾 ∈ Proset ) | |
| 15 | 0elpw | ⊢ ∅ ∈ 𝒫 𝐵 | |
| 16 | 0fi | ⊢ ∅ ∈ Fin | |
| 17 | 15 16 | elini | ⊢ ∅ ∈ ( 𝒫 𝐵 ∩ Fin ) |
| 18 | raleq | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) | |
| 19 | 18 | rexbidv | ⊢ ( 𝑥 = ∅ → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) |
| 20 | 19 | rspcv | ⊢ ( ∅ ∈ ( 𝒫 𝐵 ∩ Fin ) → ( ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) |
| 21 | 17 20 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) |
| 22 | rexn0 | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 → 𝐵 ≠ ∅ ) | |
| 23 | 21 22 | syl | ⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 → 𝐵 ≠ ∅ ) |
| 24 | 23 | adantl | ⊢ ( ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) → 𝐵 ≠ ∅ ) |
| 25 | raleq | ⊢ ( 𝑥 = { 𝑎 , 𝑏 } → ( ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ { 𝑎 , 𝑏 } 𝑧 ≤ 𝑦 ) ) | |
| 26 | 25 | rexbidv | ⊢ ( 𝑥 = { 𝑎 , 𝑏 } → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ { 𝑎 , 𝑏 } 𝑧 ≤ 𝑦 ) ) |
| 27 | simplr | ⊢ ( ( ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) | |
| 28 | prelpwi | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → { 𝑎 , 𝑏 } ∈ 𝒫 𝐵 ) | |
| 29 | prfi | ⊢ { 𝑎 , 𝑏 } ∈ Fin | |
| 30 | 29 | a1i | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → { 𝑎 , 𝑏 } ∈ Fin ) |
| 31 | 28 30 | elind | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → { 𝑎 , 𝑏 } ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
| 32 | 31 | adantl | ⊢ ( ( ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → { 𝑎 , 𝑏 } ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
| 33 | 26 27 32 | rspcdva | ⊢ ( ( ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ { 𝑎 , 𝑏 } 𝑧 ≤ 𝑦 ) |
| 34 | vex | ⊢ 𝑎 ∈ V | |
| 35 | vex | ⊢ 𝑏 ∈ V | |
| 36 | breq1 | ⊢ ( 𝑧 = 𝑎 → ( 𝑧 ≤ 𝑦 ↔ 𝑎 ≤ 𝑦 ) ) | |
| 37 | breq1 | ⊢ ( 𝑧 = 𝑏 → ( 𝑧 ≤ 𝑦 ↔ 𝑏 ≤ 𝑦 ) ) | |
| 38 | 34 35 36 37 | ralpr | ⊢ ( ∀ 𝑧 ∈ { 𝑎 , 𝑏 } 𝑧 ≤ 𝑦 ↔ ( 𝑎 ≤ 𝑦 ∧ 𝑏 ≤ 𝑦 ) ) |
| 39 | 38 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ { 𝑎 , 𝑏 } 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑎 ≤ 𝑦 ∧ 𝑏 ≤ 𝑦 ) ) |
| 40 | 33 39 | sylib | ⊢ ( ( ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑎 ≤ 𝑦 ∧ 𝑏 ≤ 𝑦 ) ) |
| 41 | 40 | ralrimivva | ⊢ ( ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑎 ≤ 𝑦 ∧ 𝑏 ≤ 𝑦 ) ) |
| 42 | 1 2 | isdrs | ⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑎 ≤ 𝑦 ∧ 𝑏 ≤ 𝑦 ) ) ) |
| 43 | 14 24 41 42 | syl3anbrc | ⊢ ( ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) → 𝐾 ∈ Dirset ) |
| 44 | 13 43 | impbii | ⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑥 𝑧 ≤ 𝑦 ) ) |