This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Anyfinite number of elements in a directed set have a common upper bound. Here is where the nonemptiness constraint in df-drs first comes into play; without it we would need an additional constraint that X not be empty. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drsbn0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| drsdirfi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | drsdirfi | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ∧ 𝑋 ∈ Fin ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsbn0.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | drsdirfi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | sseq1 | ⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) ) | |
| 4 | 3 | anbi2d | ⊢ ( 𝑎 = ∅ → ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) ↔ ( 𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵 ) ) ) |
| 5 | raleq | ⊢ ( 𝑎 = ∅ → ( ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝑎 = ∅ → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) |
| 7 | 4 6 | imbi12d | ⊢ ( 𝑎 = ∅ → ( ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ) ↔ ( ( 𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) ) |
| 8 | sseq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝐵 ↔ 𝑏 ⊆ 𝐵 ) ) | |
| 9 | 8 | anbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) ↔ ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) ) ) |
| 10 | raleq | ⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) ) | |
| 11 | 10 | rexbidv | ⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ) ↔ ( ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) ) ) |
| 13 | sseq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝐵 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ) | |
| 14 | 13 | anbi2d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) ↔ ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ) ) |
| 15 | raleq | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) | |
| 16 | 15 | rexbidv | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
| 17 | 14 16 | imbi12d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ) ↔ ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) ) |
| 18 | sseq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 ⊆ 𝐵 ↔ 𝑋 ⊆ 𝐵 ) ) | |
| 19 | 18 | anbi2d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) ↔ ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ) ) ) |
| 20 | raleq | ⊢ ( 𝑎 = 𝑋 → ( ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) ) | |
| 21 | 20 | rexbidv | ⊢ ( 𝑎 = 𝑋 → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) ) |
| 22 | 19 21 | imbi12d | ⊢ ( 𝑎 = 𝑋 → ( ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ) ↔ ( ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) ) ) |
| 23 | 1 | drsbn0 | ⊢ ( 𝐾 ∈ Dirset → 𝐵 ≠ ∅ ) |
| 24 | ral0 | ⊢ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 | |
| 25 | 24 | jctr | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) |
| 26 | 25 | eximi | ⊢ ( ∃ 𝑦 𝑦 ∈ 𝐵 → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) |
| 27 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) | |
| 28 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) | |
| 29 | 26 27 28 | 3imtr4i | ⊢ ( 𝐵 ≠ ∅ → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) |
| 30 | 23 29 | syl | ⊢ ( 𝐾 ∈ Dirset → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) |
| 31 | 30 | adantr | ⊢ ( ( 𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) |
| 32 | ssun1 | ⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) | |
| 33 | sstr | ⊢ ( ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → 𝑏 ⊆ 𝐵 ) | |
| 34 | 32 33 | mpan | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 → 𝑏 ⊆ 𝐵 ) |
| 35 | 34 | anim2i | ⊢ ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) ) |
| 36 | breq2 | ⊢ ( 𝑦 = 𝑎 → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 𝑎 ) ) | |
| 37 | 36 | ralbidv | ⊢ ( 𝑦 = 𝑎 → ( ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) |
| 38 | 37 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ↔ ∃ 𝑎 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) |
| 39 | simplrr | ⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) | |
| 40 | drsprs | ⊢ ( 𝐾 ∈ Dirset → 𝐾 ∈ Proset ) | |
| 41 | 40 | ad5antr | ⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝐾 ∈ Proset ) |
| 42 | 34 | ad2antlr | ⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑏 ⊆ 𝐵 ) |
| 43 | 42 | adantr | ⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑏 ⊆ 𝐵 ) |
| 44 | 43 | sselda | ⊢ ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) → 𝑧 ∈ 𝐵 ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑧 ∈ 𝐵 ) |
| 46 | simp-4r | ⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑎 ∈ 𝐵 ) | |
| 47 | simprl | ⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 48 | 47 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑦 ∈ 𝐵 ) |
| 49 | simpr | ⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑧 ≤ 𝑎 ) | |
| 50 | simprrl | ⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑎 ≤ 𝑦 ) | |
| 51 | 50 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑎 ≤ 𝑦 ) |
| 52 | 1 2 | prstr | ⊢ ( ( 𝐾 ∈ Proset ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ≤ 𝑎 ∧ 𝑎 ≤ 𝑦 ) ) → 𝑧 ≤ 𝑦 ) |
| 53 | 41 45 46 48 49 51 52 | syl132anc | ⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑧 ≤ 𝑦 ) |
| 54 | 53 | ex | ⊢ ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) → ( 𝑧 ≤ 𝑎 → 𝑧 ≤ 𝑦 ) ) |
| 55 | 54 | ralimdva | ⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 → ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) ) |
| 56 | 55 | adantlrr | ⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 → ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) ) |
| 57 | 39 56 | mpd | ⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) |
| 58 | simprrr | ⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑐 ≤ 𝑦 ) | |
| 59 | vex | ⊢ 𝑐 ∈ V | |
| 60 | breq1 | ⊢ ( 𝑧 = 𝑐 → ( 𝑧 ≤ 𝑦 ↔ 𝑐 ≤ 𝑦 ) ) | |
| 61 | 59 60 | ralsn | ⊢ ( ∀ 𝑧 ∈ { 𝑐 } 𝑧 ≤ 𝑦 ↔ 𝑐 ≤ 𝑦 ) |
| 62 | 58 61 | sylibr | ⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ∀ 𝑧 ∈ { 𝑐 } 𝑧 ≤ 𝑦 ) |
| 63 | ralun | ⊢ ( ( ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ∧ ∀ 𝑧 ∈ { 𝑐 } 𝑧 ≤ 𝑦 ) → ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) | |
| 64 | 57 62 63 | syl2anc | ⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) |
| 65 | simpll | ⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) → 𝐾 ∈ Dirset ) | |
| 66 | simprl | ⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) → 𝑎 ∈ 𝐵 ) | |
| 67 | ssun2 | ⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) | |
| 68 | sstr | ⊢ ( ( { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → { 𝑐 } ⊆ 𝐵 ) | |
| 69 | 67 68 | mpan | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 → { 𝑐 } ⊆ 𝐵 ) |
| 70 | 59 | snss | ⊢ ( 𝑐 ∈ 𝐵 ↔ { 𝑐 } ⊆ 𝐵 ) |
| 71 | 69 70 | sylibr | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 → 𝑐 ∈ 𝐵 ) |
| 72 | 71 | ad2antlr | ⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) → 𝑐 ∈ 𝐵 ) |
| 73 | 1 2 | drsdir | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑎 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) |
| 74 | 65 66 72 73 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) |
| 75 | 64 74 | reximddv | ⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) |
| 76 | 75 | rexlimdvaa | ⊢ ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
| 77 | 38 76 | biimtrid | ⊢ ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
| 78 | 35 77 | embantd | ⊢ ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ( ( ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
| 79 | 78 | com12 | ⊢ ( ( ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) → ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
| 80 | 79 | a1i | ⊢ ( 𝑏 ∈ Fin → ( ( ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) → ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) ) |
| 81 | 7 12 17 22 31 80 | findcard2 | ⊢ ( 𝑋 ∈ Fin → ( ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) ) |
| 82 | 81 | com12 | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ) → ( 𝑋 ∈ Fin → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) ) |
| 83 | 82 | 3impia | ⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ∧ 𝑋 ∈ Fin ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) |