This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrs.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isdrs.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | isdrs | ⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrs.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isdrs.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | fveq2 | ⊢ ( 𝑓 = 𝐾 → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐾 ) ) | |
| 4 | 3 1 | eqtr4di | ⊢ ( 𝑓 = 𝐾 → ( Base ‘ 𝑓 ) = 𝐵 ) |
| 5 | fveq2 | ⊢ ( 𝑓 = 𝐾 → ( le ‘ 𝑓 ) = ( le ‘ 𝐾 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑓 = 𝐾 → ( le ‘ 𝑓 ) = ≤ ) |
| 7 | 6 | sbceq1d | ⊢ ( 𝑓 = 𝐾 → ( [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ↔ [ ≤ / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ) ) |
| 8 | 4 7 | sbceqbid | ⊢ ( 𝑓 = 𝐾 → ( [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ↔ [ 𝐵 / 𝑏 ] [ ≤ / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ) ) |
| 9 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 10 | 2 | fvexi | ⊢ ≤ ∈ V |
| 11 | neeq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ) → ( 𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) |
| 13 | rexeq | ⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ) | |
| 14 | 13 | raleqbi1dv | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ) |
| 15 | 14 | raleqbi1dv | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ) |
| 16 | breq | ⊢ ( 𝑟 = ≤ → ( 𝑥 𝑟 𝑧 ↔ 𝑥 ≤ 𝑧 ) ) | |
| 17 | breq | ⊢ ( 𝑟 = ≤ → ( 𝑦 𝑟 𝑧 ↔ 𝑦 ≤ 𝑧 ) ) | |
| 18 | 16 17 | anbi12d | ⊢ ( 𝑟 = ≤ → ( ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 19 | 18 | rexbidv | ⊢ ( 𝑟 = ≤ → ( ∃ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 20 | 19 | 2ralbidv | ⊢ ( 𝑟 = ≤ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 21 | 15 20 | sylan9bb | ⊢ ( ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 22 | 12 21 | anbi12d | ⊢ ( ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ) → ( ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ↔ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) ) |
| 23 | 9 10 22 | sbc2ie | ⊢ ( [ 𝐵 / 𝑏 ] [ ≤ / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ↔ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 24 | 8 23 | bitrdi | ⊢ ( 𝑓 = 𝐾 → ( [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ↔ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) ) |
| 25 | df-drs | ⊢ Dirset = { 𝑓 ∈ Proset ∣ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) } | |
| 26 | 24 25 | elrab2 | ⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) ) |
| 27 | 3anass | ⊢ ( ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ↔ ( 𝐾 ∈ Proset ∧ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) ) | |
| 28 | 26 27 | bitr4i | ⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |