This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) Avoid df-clel , ax-8 . (Revised by GG, 2-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexn0 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
| 2 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
| 3 | 2 | con3i | ⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅ ) |
| 4 | 1 3 | sylbi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ¬ 𝐴 = ∅ ) |
| 5 | 4 | neqned | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅ ) |