This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip2eq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| ip2eq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| Assertion | ip2eq | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2eq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | ip2eq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) ) | |
| 4 | 3 | ralrimivw | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) ) |
| 5 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 6 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 7 | 2 6 | lmodvsubcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) |
| 8 | 5 7 | syl3an1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) |
| 9 | oveq1 | ⊢ ( 𝑥 = ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) → ( 𝑥 , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ) | |
| 10 | oveq1 | ⊢ ( 𝑥 = ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) → ( 𝑥 , 𝐵 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) → ( ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) ↔ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 12 | 11 | rspcv | ⊢ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 13 | 8 12 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 14 | simp1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ PreHil ) | |
| 15 | simp2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 16 | simp3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 17 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 18 | eqid | ⊢ ( -g ‘ ( Scalar ‘ 𝑊 ) ) = ( -g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 19 | 17 1 2 6 18 | ipsubdi | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 20 | 14 8 15 16 19 | syl13anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 21 | 20 | eqeq1d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 22 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 23 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 24 | 17 1 2 22 23 | ipeq0 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) → ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 0g ‘ 𝑊 ) ) ) |
| 25 | 14 8 24 | syl2anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 0g ‘ 𝑊 ) ) ) |
| 26 | 21 25 | bitr3d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 0g ‘ 𝑊 ) ) ) |
| 27 | 5 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 28 | 17 | lmodfgrp | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 29 | 27 28 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 30 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 31 | 17 1 2 30 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 32 | 14 8 15 31 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 33 | 17 1 2 30 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 34 | 14 8 16 33 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 35 | 30 22 18 | grpsubeq0 | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 36 | 29 32 34 35 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 37 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 38 | 5 37 | syl | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ Grp ) |
| 39 | 2 23 6 | grpsubeq0 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 0g ‘ 𝑊 ) ↔ 𝐴 = 𝐵 ) ) |
| 40 | 38 39 | syl3an1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 0g ‘ 𝑊 ) ↔ 𝐴 = 𝐵 ) ) |
| 41 | 26 36 40 | 3bitr3d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 42 | 13 41 | sylibd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 43 | 4 42 | impbid2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) ) ) |