This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip2eq.h | |- ., = ( .i ` W ) |
|
| ip2eq.v | |- V = ( Base ` W ) |
||
| Assertion | ip2eq | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A = B <-> A. x e. V ( x ., A ) = ( x ., B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2eq.h | |- ., = ( .i ` W ) |
|
| 2 | ip2eq.v | |- V = ( Base ` W ) |
|
| 3 | oveq2 | |- ( A = B -> ( x ., A ) = ( x ., B ) ) |
|
| 4 | 3 | ralrimivw | |- ( A = B -> A. x e. V ( x ., A ) = ( x ., B ) ) |
| 5 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 6 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 7 | 2 6 | lmodvsubcl | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A ( -g ` W ) B ) e. V ) |
| 8 | 5 7 | syl3an1 | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ( -g ` W ) B ) e. V ) |
| 9 | oveq1 | |- ( x = ( A ( -g ` W ) B ) -> ( x ., A ) = ( ( A ( -g ` W ) B ) ., A ) ) |
|
| 10 | oveq1 | |- ( x = ( A ( -g ` W ) B ) -> ( x ., B ) = ( ( A ( -g ` W ) B ) ., B ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( x = ( A ( -g ` W ) B ) -> ( ( x ., A ) = ( x ., B ) <-> ( ( A ( -g ` W ) B ) ., A ) = ( ( A ( -g ` W ) B ) ., B ) ) ) |
| 12 | 11 | rspcv | |- ( ( A ( -g ` W ) B ) e. V -> ( A. x e. V ( x ., A ) = ( x ., B ) -> ( ( A ( -g ` W ) B ) ., A ) = ( ( A ( -g ` W ) B ) ., B ) ) ) |
| 13 | 8 12 | syl | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A. x e. V ( x ., A ) = ( x ., B ) -> ( ( A ( -g ` W ) B ) ., A ) = ( ( A ( -g ` W ) B ) ., B ) ) ) |
| 14 | simp1 | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> W e. PreHil ) |
|
| 15 | simp2 | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> A e. V ) |
|
| 16 | simp3 | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> B e. V ) |
|
| 17 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 18 | eqid | |- ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) ) |
|
| 19 | 17 1 2 6 18 | ipsubdi | |- ( ( W e. PreHil /\ ( ( A ( -g ` W ) B ) e. V /\ A e. V /\ B e. V ) ) -> ( ( A ( -g ` W ) B ) ., ( A ( -g ` W ) B ) ) = ( ( ( A ( -g ` W ) B ) ., A ) ( -g ` ( Scalar ` W ) ) ( ( A ( -g ` W ) B ) ., B ) ) ) |
| 20 | 14 8 15 16 19 | syl13anc | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( A ( -g ` W ) B ) ., ( A ( -g ` W ) B ) ) = ( ( ( A ( -g ` W ) B ) ., A ) ( -g ` ( Scalar ` W ) ) ( ( A ( -g ` W ) B ) ., B ) ) ) |
| 21 | 20 | eqeq1d | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( ( A ( -g ` W ) B ) ., ( A ( -g ` W ) B ) ) = ( 0g ` ( Scalar ` W ) ) <-> ( ( ( A ( -g ` W ) B ) ., A ) ( -g ` ( Scalar ` W ) ) ( ( A ( -g ` W ) B ) ., B ) ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 22 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 23 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 24 | 17 1 2 22 23 | ipeq0 | |- ( ( W e. PreHil /\ ( A ( -g ` W ) B ) e. V ) -> ( ( ( A ( -g ` W ) B ) ., ( A ( -g ` W ) B ) ) = ( 0g ` ( Scalar ` W ) ) <-> ( A ( -g ` W ) B ) = ( 0g ` W ) ) ) |
| 25 | 14 8 24 | syl2anc | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( ( A ( -g ` W ) B ) ., ( A ( -g ` W ) B ) ) = ( 0g ` ( Scalar ` W ) ) <-> ( A ( -g ` W ) B ) = ( 0g ` W ) ) ) |
| 26 | 21 25 | bitr3d | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( ( ( A ( -g ` W ) B ) ., A ) ( -g ` ( Scalar ` W ) ) ( ( A ( -g ` W ) B ) ., B ) ) = ( 0g ` ( Scalar ` W ) ) <-> ( A ( -g ` W ) B ) = ( 0g ` W ) ) ) |
| 27 | 5 | 3ad2ant1 | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> W e. LMod ) |
| 28 | 17 | lmodfgrp | |- ( W e. LMod -> ( Scalar ` W ) e. Grp ) |
| 29 | 27 28 | syl | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( Scalar ` W ) e. Grp ) |
| 30 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 31 | 17 1 2 30 | ipcl | |- ( ( W e. PreHil /\ ( A ( -g ` W ) B ) e. V /\ A e. V ) -> ( ( A ( -g ` W ) B ) ., A ) e. ( Base ` ( Scalar ` W ) ) ) |
| 32 | 14 8 15 31 | syl3anc | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( A ( -g ` W ) B ) ., A ) e. ( Base ` ( Scalar ` W ) ) ) |
| 33 | 17 1 2 30 | ipcl | |- ( ( W e. PreHil /\ ( A ( -g ` W ) B ) e. V /\ B e. V ) -> ( ( A ( -g ` W ) B ) ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
| 34 | 14 8 16 33 | syl3anc | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( A ( -g ` W ) B ) ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
| 35 | 30 22 18 | grpsubeq0 | |- ( ( ( Scalar ` W ) e. Grp /\ ( ( A ( -g ` W ) B ) ., A ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( A ( -g ` W ) B ) ., B ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( ( ( A ( -g ` W ) B ) ., A ) ( -g ` ( Scalar ` W ) ) ( ( A ( -g ` W ) B ) ., B ) ) = ( 0g ` ( Scalar ` W ) ) <-> ( ( A ( -g ` W ) B ) ., A ) = ( ( A ( -g ` W ) B ) ., B ) ) ) |
| 36 | 29 32 34 35 | syl3anc | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( ( ( A ( -g ` W ) B ) ., A ) ( -g ` ( Scalar ` W ) ) ( ( A ( -g ` W ) B ) ., B ) ) = ( 0g ` ( Scalar ` W ) ) <-> ( ( A ( -g ` W ) B ) ., A ) = ( ( A ( -g ` W ) B ) ., B ) ) ) |
| 37 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 38 | 5 37 | syl | |- ( W e. PreHil -> W e. Grp ) |
| 39 | 2 23 6 | grpsubeq0 | |- ( ( W e. Grp /\ A e. V /\ B e. V ) -> ( ( A ( -g ` W ) B ) = ( 0g ` W ) <-> A = B ) ) |
| 40 | 38 39 | syl3an1 | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( A ( -g ` W ) B ) = ( 0g ` W ) <-> A = B ) ) |
| 41 | 26 36 40 | 3bitr3d | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( ( A ( -g ` W ) B ) ., A ) = ( ( A ( -g ` W ) B ) ., B ) <-> A = B ) ) |
| 42 | 13 41 | sylibd | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A. x e. V ( x ., A ) = ( x ., B ) -> A = B ) ) |
| 43 | 4 42 | impbid2 | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A = B <-> A. x e. V ( x ., A ) = ( x ., B ) ) ) |