This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 18-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ioombl1.b | |- B = ( A (,) +oo ) |
|
| ioombl1.a | |- ( ph -> A e. RR ) |
||
| ioombl1.e | |- ( ph -> E C_ RR ) |
||
| ioombl1.v | |- ( ph -> ( vol* ` E ) e. RR ) |
||
| ioombl1.c | |- ( ph -> C e. RR+ ) |
||
| ioombl1.s | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| ioombl1.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| ioombl1.u | |- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
||
| ioombl1.f1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| ioombl1.f2 | |- ( ph -> E C_ U. ran ( (,) o. F ) ) |
||
| ioombl1.f3 | |- ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
||
| ioombl1.p | |- P = ( 1st ` ( F ` n ) ) |
||
| ioombl1.q | |- Q = ( 2nd ` ( F ` n ) ) |
||
| ioombl1.g | |- G = ( n e. NN |-> <. if ( if ( P <_ A , A , P ) <_ Q , if ( P <_ A , A , P ) , Q ) , Q >. ) |
||
| ioombl1.h | |- H = ( n e. NN |-> <. P , if ( if ( P <_ A , A , P ) <_ Q , if ( P <_ A , A , P ) , Q ) >. ) |
||
| Assertion | ioombl1lem2 | |- ( ph -> sup ( ran S , RR* , < ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl1.b | |- B = ( A (,) +oo ) |
|
| 2 | ioombl1.a | |- ( ph -> A e. RR ) |
|
| 3 | ioombl1.e | |- ( ph -> E C_ RR ) |
|
| 4 | ioombl1.v | |- ( ph -> ( vol* ` E ) e. RR ) |
|
| 5 | ioombl1.c | |- ( ph -> C e. RR+ ) |
|
| 6 | ioombl1.s | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 7 | ioombl1.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 8 | ioombl1.u | |- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
|
| 9 | ioombl1.f1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 10 | ioombl1.f2 | |- ( ph -> E C_ U. ran ( (,) o. F ) ) |
|
| 11 | ioombl1.f3 | |- ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
|
| 12 | ioombl1.p | |- P = ( 1st ` ( F ` n ) ) |
|
| 13 | ioombl1.q | |- Q = ( 2nd ` ( F ` n ) ) |
|
| 14 | ioombl1.g | |- G = ( n e. NN |-> <. if ( if ( P <_ A , A , P ) <_ Q , if ( P <_ A , A , P ) , Q ) , Q >. ) |
|
| 15 | ioombl1.h | |- H = ( n e. NN |-> <. P , if ( if ( P <_ A , A , P ) <_ Q , if ( P <_ A , A , P ) , Q ) >. ) |
|
| 16 | eqid | |- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
|
| 17 | 16 6 | ovolsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 18 | 9 17 | syl | |- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
| 19 | 18 | frnd | |- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
| 20 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 21 | 19 20 | sstrdi | |- ( ph -> ran S C_ RR* ) |
| 22 | supxrcl | |- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
|
| 23 | 21 22 | syl | |- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
| 24 | 5 | rpred | |- ( ph -> C e. RR ) |
| 25 | 4 24 | readdcld | |- ( ph -> ( ( vol* ` E ) + C ) e. RR ) |
| 26 | mnfxr | |- -oo e. RR* |
|
| 27 | 26 | a1i | |- ( ph -> -oo e. RR* ) |
| 28 | 18 | ffnd | |- ( ph -> S Fn NN ) |
| 29 | 1nn | |- 1 e. NN |
|
| 30 | fnfvelrn | |- ( ( S Fn NN /\ 1 e. NN ) -> ( S ` 1 ) e. ran S ) |
|
| 31 | 28 29 30 | sylancl | |- ( ph -> ( S ` 1 ) e. ran S ) |
| 32 | 21 31 | sseldd | |- ( ph -> ( S ` 1 ) e. RR* ) |
| 33 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 34 | ffvelcdm | |- ( ( S : NN --> ( 0 [,) +oo ) /\ 1 e. NN ) -> ( S ` 1 ) e. ( 0 [,) +oo ) ) |
|
| 35 | 18 29 34 | sylancl | |- ( ph -> ( S ` 1 ) e. ( 0 [,) +oo ) ) |
| 36 | 33 35 | sselid | |- ( ph -> ( S ` 1 ) e. RR ) |
| 37 | 36 | mnfltd | |- ( ph -> -oo < ( S ` 1 ) ) |
| 38 | supxrub | |- ( ( ran S C_ RR* /\ ( S ` 1 ) e. ran S ) -> ( S ` 1 ) <_ sup ( ran S , RR* , < ) ) |
|
| 39 | 21 31 38 | syl2anc | |- ( ph -> ( S ` 1 ) <_ sup ( ran S , RR* , < ) ) |
| 40 | 27 32 23 37 39 | xrltletrd | |- ( ph -> -oo < sup ( ran S , RR* , < ) ) |
| 41 | xrre | |- ( ( ( sup ( ran S , RR* , < ) e. RR* /\ ( ( vol* ` E ) + C ) e. RR ) /\ ( -oo < sup ( ran S , RR* , < ) /\ sup ( ran S , RR* , < ) <_ ( ( vol* ` E ) + C ) ) ) -> sup ( ran S , RR* , < ) e. RR ) |
|
| 42 | 23 25 40 11 41 | syl22anc | |- ( ph -> sup ( ran S , RR* , < ) e. RR ) |