This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014) (Proof shortened by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioombl1 | |- ( A e. RR* -> ( A (,) +oo ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | ioossre | |- ( A (,) +oo ) C_ RR |
|
| 3 | 2 | a1i | |- ( A e. RR -> ( A (,) +oo ) C_ RR ) |
| 4 | elpwi | |- ( x e. ~P RR -> x C_ RR ) |
|
| 5 | simplrl | |- ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) -> x C_ RR ) |
|
| 6 | simplrr | |- ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) -> ( vol* ` x ) e. RR ) |
|
| 7 | simpr | |- ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) -> y e. RR+ ) |
|
| 8 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. f ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) |
|
| 9 | 8 | ovolgelb | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR /\ y e. RR+ ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) |
| 10 | 5 6 7 9 | syl3anc | |- ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) |
| 11 | eqid | |- ( A (,) +oo ) = ( A (,) +oo ) |
|
| 12 | simplll | |- ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> A e. RR ) |
|
| 13 | 5 | adantr | |- ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> x C_ RR ) |
| 14 | 6 | adantr | |- ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> ( vol* ` x ) e. RR ) |
| 15 | simplr | |- ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> y e. RR+ ) |
|
| 16 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) >. ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) >. ) ) ) |
|
| 17 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. ( 1st ` ( f ` m ) ) , if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) >. ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. ( 1st ` ( f ` m ) ) , if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) >. ) ) ) |
|
| 18 | simprl | |- ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
|
| 19 | elovolmlem | |- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 20 | 18 19 | sylib | |- ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 21 | simprrl | |- ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> x C_ U. ran ( (,) o. f ) ) |
|
| 22 | simprrr | |- ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) |
|
| 23 | eqid | |- ( 1st ` ( f ` n ) ) = ( 1st ` ( f ` n ) ) |
|
| 24 | eqid | |- ( 2nd ` ( f ` n ) ) = ( 2nd ` ( f ` n ) ) |
|
| 25 | 2fveq3 | |- ( m = n -> ( 1st ` ( f ` m ) ) = ( 1st ` ( f ` n ) ) ) |
|
| 26 | 25 | breq1d | |- ( m = n -> ( ( 1st ` ( f ` m ) ) <_ A <-> ( 1st ` ( f ` n ) ) <_ A ) ) |
| 27 | 26 25 | ifbieq2d | |- ( m = n -> if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) = if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) ) |
| 28 | 2fveq3 | |- ( m = n -> ( 2nd ` ( f ` m ) ) = ( 2nd ` ( f ` n ) ) ) |
|
| 29 | 27 28 | breq12d | |- ( m = n -> ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) <-> if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) ) ) |
| 30 | 29 27 28 | ifbieq12d | |- ( m = n -> if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) = if ( if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) ) ) |
| 31 | 30 28 | opeq12d | |- ( m = n -> <. if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) >. = <. if ( if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) >. ) |
| 32 | 31 | cbvmptv | |- ( m e. NN |-> <. if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) >. ) = ( n e. NN |-> <. if ( if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) >. ) |
| 33 | 25 30 | opeq12d | |- ( m = n -> <. ( 1st ` ( f ` m ) ) , if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) >. = <. ( 1st ` ( f ` n ) ) , if ( if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) ) >. ) |
| 34 | 33 | cbvmptv | |- ( m e. NN |-> <. ( 1st ` ( f ` m ) ) , if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) >. ) = ( n e. NN |-> <. ( 1st ` ( f ` n ) ) , if ( if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) ) >. ) |
| 35 | 11 12 13 14 15 8 16 17 20 21 22 23 24 32 34 | ioombl1lem4 | |- ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( ( vol* ` x ) + y ) ) |
| 36 | 10 35 | rexlimddv | |- ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( ( vol* ` x ) + y ) ) |
| 37 | 36 | ralrimiva | |- ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> A. y e. RR+ ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( ( vol* ` x ) + y ) ) |
| 38 | inss1 | |- ( x i^i ( A (,) +oo ) ) C_ x |
|
| 39 | ovolsscl | |- ( ( ( x i^i ( A (,) +oo ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( A (,) +oo ) ) ) e. RR ) |
|
| 40 | 38 39 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( A (,) +oo ) ) ) e. RR ) |
| 41 | 40 | adantl | |- ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x i^i ( A (,) +oo ) ) ) e. RR ) |
| 42 | difss | |- ( x \ ( A (,) +oo ) ) C_ x |
|
| 43 | ovolsscl | |- ( ( ( x \ ( A (,) +oo ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ ( A (,) +oo ) ) ) e. RR ) |
|
| 44 | 42 43 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ ( A (,) +oo ) ) ) e. RR ) |
| 45 | 44 | adantl | |- ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ ( A (,) +oo ) ) ) e. RR ) |
| 46 | 41 45 | readdcld | |- ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) e. RR ) |
| 47 | simprr | |- ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` x ) e. RR ) |
|
| 48 | alrple | |- ( ( ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) e. RR /\ ( vol* ` x ) e. RR ) -> ( ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) <-> A. y e. RR+ ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( ( vol* ` x ) + y ) ) ) |
|
| 49 | 46 47 48 | syl2anc | |- ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) <-> A. y e. RR+ ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( ( vol* ` x ) + y ) ) ) |
| 50 | 37 49 | mpbird | |- ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) ) |
| 51 | 50 | expr | |- ( ( A e. RR /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) ) ) |
| 52 | 4 51 | sylan2 | |- ( ( A e. RR /\ x e. ~P RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) ) ) |
| 53 | 52 | ralrimiva | |- ( A e. RR -> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) ) ) |
| 54 | ismbl2 | |- ( ( A (,) +oo ) e. dom vol <-> ( ( A (,) +oo ) C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) ) ) ) |
|
| 55 | 3 53 54 | sylanbrc | |- ( A e. RR -> ( A (,) +oo ) e. dom vol ) |
| 56 | oveq1 | |- ( A = +oo -> ( A (,) +oo ) = ( +oo (,) +oo ) ) |
|
| 57 | iooid | |- ( +oo (,) +oo ) = (/) |
|
| 58 | 56 57 | eqtrdi | |- ( A = +oo -> ( A (,) +oo ) = (/) ) |
| 59 | 0mbl | |- (/) e. dom vol |
|
| 60 | 58 59 | eqeltrdi | |- ( A = +oo -> ( A (,) +oo ) e. dom vol ) |
| 61 | oveq1 | |- ( A = -oo -> ( A (,) +oo ) = ( -oo (,) +oo ) ) |
|
| 62 | ioomax | |- ( -oo (,) +oo ) = RR |
|
| 63 | 61 62 | eqtrdi | |- ( A = -oo -> ( A (,) +oo ) = RR ) |
| 64 | rembl | |- RR e. dom vol |
|
| 65 | 63 64 | eqeltrdi | |- ( A = -oo -> ( A (,) +oo ) e. dom vol ) |
| 66 | 55 60 65 | 3jaoi | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( A (,) +oo ) e. dom vol ) |
| 67 | 1 66 | sylbi | |- ( A e. RR* -> ( A (,) +oo ) e. dom vol ) |