This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014) (Revised by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngidpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| rngidpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| rngidpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | invrpropd | ⊢ ( 𝜑 → ( invr ‘ 𝐾 ) = ( invr ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | rngidpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | rngidpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | eqid | ⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) = ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) | |
| 6 | 4 5 | unitgrpbas | ⊢ ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) |
| 8 | 1 2 3 | unitpropd | ⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
| 9 | eqid | ⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) | |
| 10 | eqid | ⊢ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) = ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) | |
| 11 | 9 10 | unitgrpbas | ⊢ ( Unit ‘ 𝐿 ) = ( Base ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) |
| 12 | 8 11 | eqtrdi | ⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Base ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 14 | 13 4 | unitss | ⊢ ( Unit ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) |
| 15 | 14 1 | sseqtrrid | ⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) ⊆ 𝐵 ) |
| 16 | 15 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ 𝐾 ) ) → 𝑥 ∈ 𝐵 ) |
| 17 | 15 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) → 𝑦 ∈ 𝐵 ) |
| 18 | 16 17 | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ 𝐾 ) ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 19 | 18 3 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ 𝐾 ) ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 20 | fvex | ⊢ ( Unit ‘ 𝐾 ) ∈ V | |
| 21 | eqid | ⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) | |
| 22 | eqid | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) | |
| 23 | 21 22 | mgpplusg | ⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 24 | 5 23 | ressplusg | ⊢ ( ( Unit ‘ 𝐾 ) ∈ V → ( .r ‘ 𝐾 ) = ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) ) |
| 25 | 20 24 | ax-mp | ⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) |
| 26 | 25 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) 𝑦 ) |
| 27 | fvex | ⊢ ( Unit ‘ 𝐿 ) ∈ V | |
| 28 | eqid | ⊢ ( mulGrp ‘ 𝐿 ) = ( mulGrp ‘ 𝐿 ) | |
| 29 | eqid | ⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) | |
| 30 | 28 29 | mgpplusg | ⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( mulGrp ‘ 𝐿 ) ) |
| 31 | 10 30 | ressplusg | ⊢ ( ( Unit ‘ 𝐿 ) ∈ V → ( .r ‘ 𝐿 ) = ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) ) |
| 32 | 27 31 | ax-mp | ⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) |
| 33 | 32 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) 𝑦 ) |
| 34 | 19 26 33 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ 𝐾 ) ∧ 𝑦 ∈ ( Unit ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) 𝑦 ) ) |
| 35 | 7 12 34 | grpinvpropd | ⊢ ( 𝜑 → ( invg ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) = ( invg ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) ) |
| 36 | eqid | ⊢ ( invr ‘ 𝐾 ) = ( invr ‘ 𝐾 ) | |
| 37 | 4 5 36 | invrfval | ⊢ ( invr ‘ 𝐾 ) = ( invg ‘ ( ( mulGrp ‘ 𝐾 ) ↾s ( Unit ‘ 𝐾 ) ) ) |
| 38 | eqid | ⊢ ( invr ‘ 𝐿 ) = ( invr ‘ 𝐿 ) | |
| 39 | 9 10 38 | invrfval | ⊢ ( invr ‘ 𝐿 ) = ( invg ‘ ( ( mulGrp ‘ 𝐿 ) ↾s ( Unit ‘ 𝐿 ) ) ) |
| 40 | 35 37 39 | 3eqtr4g | ⊢ ( 𝜑 → ( invr ‘ 𝐾 ) = ( invr ‘ 𝐿 ) ) |