This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngidpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| rngidpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| rngidpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | unitpropd | ⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | rngidpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | rngidpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | 1 2 3 | rngidpropd | ⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) |
| 5 | 4 | breq2d | ⊢ ( 𝜑 → ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ↔ 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐿 ) ) ) |
| 6 | 4 | breq2d | ⊢ ( 𝜑 → ( 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐾 ) ↔ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐿 ) ) ) |
| 7 | 5 6 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐾 ) ) ↔ ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐿 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐿 ) ) ) ) |
| 8 | 1 2 3 | dvdsrpropd | ⊢ ( 𝜑 → ( ∥r ‘ 𝐾 ) = ( ∥r ‘ 𝐿 ) ) |
| 9 | 8 | breqd | ⊢ ( 𝜑 → ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐿 ) ↔ 𝑧 ( ∥r ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) |
| 10 | eqid | ⊢ ( oppr ‘ 𝐾 ) = ( oppr ‘ 𝐾 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 12 | 10 11 | opprbas | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( oppr ‘ 𝐾 ) ) |
| 13 | 1 12 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( oppr ‘ 𝐾 ) ) ) |
| 14 | eqid | ⊢ ( oppr ‘ 𝐿 ) = ( oppr ‘ 𝐿 ) | |
| 15 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 16 | 14 15 | opprbas | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( oppr ‘ 𝐿 ) ) |
| 17 | 2 16 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( oppr ‘ 𝐿 ) ) ) |
| 18 | 3 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 19 | eqid | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) | |
| 20 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝐾 ) ) = ( .r ‘ ( oppr ‘ 𝐾 ) ) | |
| 21 | 11 19 10 20 | opprmul | ⊢ ( 𝑦 ( .r ‘ ( oppr ‘ 𝐾 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) |
| 22 | eqid | ⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) | |
| 23 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝐿 ) ) = ( .r ‘ ( oppr ‘ 𝐿 ) ) | |
| 24 | 15 22 14 23 | opprmul | ⊢ ( 𝑦 ( .r ‘ ( oppr ‘ 𝐿 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) |
| 25 | 18 21 24 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝐾 ) ) 𝑥 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝐿 ) ) 𝑥 ) ) |
| 26 | 13 17 25 | dvdsrpropd | ⊢ ( 𝜑 → ( ∥r ‘ ( oppr ‘ 𝐾 ) ) = ( ∥r ‘ ( oppr ‘ 𝐿 ) ) ) |
| 27 | 26 | breqd | ⊢ ( 𝜑 → ( 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐿 ) ↔ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐿 ) ) ( 1r ‘ 𝐿 ) ) ) |
| 28 | 9 27 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐿 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐿 ) ) ↔ ( 𝑧 ( ∥r ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐿 ) ) ( 1r ‘ 𝐿 ) ) ) ) |
| 29 | 7 28 | bitrd | ⊢ ( 𝜑 → ( ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐾 ) ) ↔ ( 𝑧 ( ∥r ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐿 ) ) ( 1r ‘ 𝐿 ) ) ) ) |
| 30 | eqid | ⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) | |
| 31 | eqid | ⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) | |
| 32 | eqid | ⊢ ( ∥r ‘ 𝐾 ) = ( ∥r ‘ 𝐾 ) | |
| 33 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝐾 ) ) = ( ∥r ‘ ( oppr ‘ 𝐾 ) ) | |
| 34 | 30 31 32 10 33 | isunit | ⊢ ( 𝑧 ∈ ( Unit ‘ 𝐾 ) ↔ ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐾 ) ) ) |
| 35 | eqid | ⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) | |
| 36 | eqid | ⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) | |
| 37 | eqid | ⊢ ( ∥r ‘ 𝐿 ) = ( ∥r ‘ 𝐿 ) | |
| 38 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝐿 ) ) = ( ∥r ‘ ( oppr ‘ 𝐿 ) ) | |
| 39 | 35 36 37 14 38 | isunit | ⊢ ( 𝑧 ∈ ( Unit ‘ 𝐿 ) ↔ ( 𝑧 ( ∥r ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐿 ) ) ( 1r ‘ 𝐿 ) ) ) |
| 40 | 29 34 39 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑧 ∈ ( Unit ‘ 𝐾 ) ↔ 𝑧 ∈ ( Unit ‘ 𝐿 ) ) ) |
| 41 | 40 | eqrdv | ⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |