This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014) (Revised by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngidpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| rngidpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| rngidpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | invrpropd | |- ( ph -> ( invr ` K ) = ( invr ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | rngidpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | rngidpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 4 | eqid | |- ( Unit ` K ) = ( Unit ` K ) |
|
| 5 | eqid | |- ( ( mulGrp ` K ) |`s ( Unit ` K ) ) = ( ( mulGrp ` K ) |`s ( Unit ` K ) ) |
|
| 6 | 4 5 | unitgrpbas | |- ( Unit ` K ) = ( Base ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) |
| 7 | 6 | a1i | |- ( ph -> ( Unit ` K ) = ( Base ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) ) |
| 8 | 1 2 3 | unitpropd | |- ( ph -> ( Unit ` K ) = ( Unit ` L ) ) |
| 9 | eqid | |- ( Unit ` L ) = ( Unit ` L ) |
|
| 10 | eqid | |- ( ( mulGrp ` L ) |`s ( Unit ` L ) ) = ( ( mulGrp ` L ) |`s ( Unit ` L ) ) |
|
| 11 | 9 10 | unitgrpbas | |- ( Unit ` L ) = ( Base ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) |
| 12 | 8 11 | eqtrdi | |- ( ph -> ( Unit ` K ) = ( Base ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) ) |
| 13 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 14 | 13 4 | unitss | |- ( Unit ` K ) C_ ( Base ` K ) |
| 15 | 14 1 | sseqtrrid | |- ( ph -> ( Unit ` K ) C_ B ) |
| 16 | 15 | sselda | |- ( ( ph /\ x e. ( Unit ` K ) ) -> x e. B ) |
| 17 | 15 | sselda | |- ( ( ph /\ y e. ( Unit ` K ) ) -> y e. B ) |
| 18 | 16 17 | anim12dan | |- ( ( ph /\ ( x e. ( Unit ` K ) /\ y e. ( Unit ` K ) ) ) -> ( x e. B /\ y e. B ) ) |
| 19 | 18 3 | syldan | |- ( ( ph /\ ( x e. ( Unit ` K ) /\ y e. ( Unit ` K ) ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 20 | fvex | |- ( Unit ` K ) e. _V |
|
| 21 | eqid | |- ( mulGrp ` K ) = ( mulGrp ` K ) |
|
| 22 | eqid | |- ( .r ` K ) = ( .r ` K ) |
|
| 23 | 21 22 | mgpplusg | |- ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) |
| 24 | 5 23 | ressplusg | |- ( ( Unit ` K ) e. _V -> ( .r ` K ) = ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) ) |
| 25 | 20 24 | ax-mp | |- ( .r ` K ) = ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) |
| 26 | 25 | oveqi | |- ( x ( .r ` K ) y ) = ( x ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) y ) |
| 27 | fvex | |- ( Unit ` L ) e. _V |
|
| 28 | eqid | |- ( mulGrp ` L ) = ( mulGrp ` L ) |
|
| 29 | eqid | |- ( .r ` L ) = ( .r ` L ) |
|
| 30 | 28 29 | mgpplusg | |- ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) |
| 31 | 10 30 | ressplusg | |- ( ( Unit ` L ) e. _V -> ( .r ` L ) = ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) ) |
| 32 | 27 31 | ax-mp | |- ( .r ` L ) = ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) |
| 33 | 32 | oveqi | |- ( x ( .r ` L ) y ) = ( x ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) y ) |
| 34 | 19 26 33 | 3eqtr3g | |- ( ( ph /\ ( x e. ( Unit ` K ) /\ y e. ( Unit ` K ) ) ) -> ( x ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) y ) = ( x ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) y ) ) |
| 35 | 7 12 34 | grpinvpropd | |- ( ph -> ( invg ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) = ( invg ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) ) |
| 36 | eqid | |- ( invr ` K ) = ( invr ` K ) |
|
| 37 | 4 5 36 | invrfval | |- ( invr ` K ) = ( invg ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) |
| 38 | eqid | |- ( invr ` L ) = ( invr ` L ) |
|
| 39 | 9 10 38 | invrfval | |- ( invr ` L ) = ( invg ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) |
| 40 | 35 37 39 | 3eqtr4g | |- ( ph -> ( invr ` K ) = ( invr ` L ) ) |