This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irred.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| irred.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| irred.3 | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | ||
| irred.4 | ⊢ 𝑁 = ( 𝐵 ∖ 𝑈 ) | ||
| irred.5 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | isirred | ⊢ ( 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irred.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | irred.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | irred.3 | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| 4 | irred.4 | ⊢ 𝑁 = ( 𝐵 ∖ 𝑈 ) | |
| 5 | irred.5 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 6 | elfvdm | ⊢ ( 𝑋 ∈ ( Irred ‘ 𝑅 ) → 𝑅 ∈ dom Irred ) | |
| 7 | 6 3 | eleq2s | ⊢ ( 𝑋 ∈ 𝐼 → 𝑅 ∈ dom Irred ) |
| 8 | 7 | elexd | ⊢ ( 𝑋 ∈ 𝐼 → 𝑅 ∈ V ) |
| 9 | eldifi | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ 𝑈 ) → 𝑋 ∈ 𝐵 ) | |
| 10 | 9 4 | eleq2s | ⊢ ( 𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵 ) |
| 11 | 10 1 | eleqtrdi | ⊢ ( 𝑋 ∈ 𝑁 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 12 | 11 | elfvexd | ⊢ ( 𝑋 ∈ 𝑁 → 𝑅 ∈ V ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑋 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ) → 𝑅 ∈ V ) |
| 14 | fvex | ⊢ ( Base ‘ 𝑟 ) ∈ V | |
| 15 | difexg | ⊢ ( ( Base ‘ 𝑟 ) ∈ V → ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ∈ V ) | |
| 16 | 14 15 | mp1i | ⊢ ( 𝑟 = 𝑅 → ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ∈ V ) |
| 17 | simpr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) | |
| 18 | simpl | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → 𝑟 = 𝑅 ) | |
| 19 | 18 | fveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
| 20 | 19 1 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 21 | 18 | fveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( Unit ‘ 𝑟 ) = ( Unit ‘ 𝑅 ) ) |
| 22 | 21 2 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( Unit ‘ 𝑟 ) = 𝑈 ) |
| 23 | 20 22 | difeq12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) = ( 𝐵 ∖ 𝑈 ) ) |
| 24 | 23 4 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) = 𝑁 ) |
| 25 | 17 24 | eqtrd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → 𝑏 = 𝑁 ) |
| 26 | 18 | fveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
| 27 | 26 5 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( .r ‘ 𝑟 ) = · ) |
| 28 | 27 | oveqd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 29 | 28 | neeq1d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ≠ 𝑧 ↔ ( 𝑥 · 𝑦 ) ≠ 𝑧 ) ) |
| 30 | 25 29 | raleqbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ≠ 𝑧 ↔ ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑧 ) ) |
| 31 | 25 30 | raleqbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ≠ 𝑧 ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑧 ) ) |
| 32 | 25 31 | rabeqbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) ) → { 𝑧 ∈ 𝑏 ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ≠ 𝑧 } = { 𝑧 ∈ 𝑁 ∣ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑧 } ) |
| 33 | 16 32 | csbied | ⊢ ( 𝑟 = 𝑅 → ⦋ ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) / 𝑏 ⦌ { 𝑧 ∈ 𝑏 ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ≠ 𝑧 } = { 𝑧 ∈ 𝑁 ∣ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑧 } ) |
| 34 | df-irred | ⊢ Irred = ( 𝑟 ∈ V ↦ ⦋ ( ( Base ‘ 𝑟 ) ∖ ( Unit ‘ 𝑟 ) ) / 𝑏 ⦌ { 𝑧 ∈ 𝑏 ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ≠ 𝑧 } ) | |
| 35 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 36 | 1 35 | eqeltri | ⊢ 𝐵 ∈ V |
| 37 | 36 | difexi | ⊢ ( 𝐵 ∖ 𝑈 ) ∈ V |
| 38 | 4 37 | eqeltri | ⊢ 𝑁 ∈ V |
| 39 | 38 | rabex | ⊢ { 𝑧 ∈ 𝑁 ∣ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑧 } ∈ V |
| 40 | 33 34 39 | fvmpt | ⊢ ( 𝑅 ∈ V → ( Irred ‘ 𝑅 ) = { 𝑧 ∈ 𝑁 ∣ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑧 } ) |
| 41 | 3 40 | eqtrid | ⊢ ( 𝑅 ∈ V → 𝐼 = { 𝑧 ∈ 𝑁 ∣ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑧 } ) |
| 42 | 41 | eleq2d | ⊢ ( 𝑅 ∈ V → ( 𝑋 ∈ 𝐼 ↔ 𝑋 ∈ { 𝑧 ∈ 𝑁 ∣ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑧 } ) ) |
| 43 | neeq2 | ⊢ ( 𝑧 = 𝑋 → ( ( 𝑥 · 𝑦 ) ≠ 𝑧 ↔ ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) | |
| 44 | 43 | 2ralbidv | ⊢ ( 𝑧 = 𝑋 → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑧 ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) |
| 45 | 44 | elrab | ⊢ ( 𝑋 ∈ { 𝑧 ∈ 𝑁 ∣ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑧 } ↔ ( 𝑋 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) |
| 46 | 42 45 | bitrdi | ⊢ ( 𝑅 ∈ V → ( 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) ) |
| 47 | 8 13 46 | pm5.21nii | ⊢ ( 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) |