This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supiso.1 | ⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| supiso.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| supisoex.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ) | ||
| supiso.4 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | ||
| Assertion | supiso | ⊢ ( 𝜑 → sup ( ( 𝐹 “ 𝐶 ) , 𝐵 , 𝑆 ) = ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supiso.1 | ⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 2 | supiso.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 3 | supisoex.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ) | |
| 4 | supiso.4 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 5 | isoso | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) |
| 7 | 4 6 | mpbid | ⊢ ( 𝜑 → 𝑆 Or 𝐵 ) |
| 8 | isof1o | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 9 | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 10 | 1 8 9 | 3syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 11 | 4 3 | supcl | ⊢ ( 𝜑 → sup ( 𝐶 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
| 12 | 10 11 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) ∈ 𝐵 ) |
| 13 | 4 3 | supub | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐶 → ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ) ) |
| 14 | 13 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐶 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ) |
| 15 | 4 3 | suplub | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) |
| 16 | 15 | expd | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐴 → ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) ) |
| 17 | 16 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) |
| 18 | 1 2 | supisolem | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , 𝐴 , 𝑅 ) ∈ 𝐴 ) → ( ( ∀ 𝑢 ∈ 𝐶 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 19 | 11 18 | mpdan | ⊢ ( 𝜑 → ( ( ∀ 𝑢 ∈ 𝐶 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑢 ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 sup ( 𝐶 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐶 𝑢 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 20 | 14 17 19 | mpbi2and | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 21 | 20 | simpld | ⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ) |
| 22 | 21 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ) → ¬ ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) 𝑆 𝑤 ) |
| 23 | 20 | simprd | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) |
| 24 | 23 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) |
| 25 | 24 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 𝑆 ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) ) ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) |
| 26 | 7 12 22 25 | eqsupd | ⊢ ( 𝜑 → sup ( ( 𝐹 “ 𝐶 ) , 𝐵 , 𝑆 ) = ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , 𝑅 ) ) ) |