This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negiso.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ - 𝑥 ) | |
| Assertion | negiso | ⊢ ( 𝐹 Isom < , ◡ < ( ℝ , ℝ ) ∧ ◡ 𝐹 = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negiso.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ - 𝑥 ) | |
| 2 | simpr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 3 | 2 | renegcld | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → - 𝑥 ∈ ℝ ) |
| 4 | simpr | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 5 | 4 | renegcld | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ℝ ) → - 𝑦 ∈ ℝ ) |
| 6 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 7 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 8 | negcon2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) |
| 10 | 9 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) |
| 11 | 1 3 5 10 | f1ocnv2d | ⊢ ( ⊤ → ( 𝐹 : ℝ –1-1-onto→ ℝ ∧ ◡ 𝐹 = ( 𝑦 ∈ ℝ ↦ - 𝑦 ) ) ) |
| 12 | 11 | mptru | ⊢ ( 𝐹 : ℝ –1-1-onto→ ℝ ∧ ◡ 𝐹 = ( 𝑦 ∈ ℝ ↦ - 𝑦 ) ) |
| 13 | 12 | simpli | ⊢ 𝐹 : ℝ –1-1-onto→ ℝ |
| 14 | ltneg | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 < 𝑦 ↔ - 𝑦 < - 𝑧 ) ) | |
| 15 | negex | ⊢ - 𝑧 ∈ V | |
| 16 | negex | ⊢ - 𝑦 ∈ V | |
| 17 | 15 16 | brcnv | ⊢ ( - 𝑧 ◡ < - 𝑦 ↔ - 𝑦 < - 𝑧 ) |
| 18 | 14 17 | bitr4di | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 < 𝑦 ↔ - 𝑧 ◡ < - 𝑦 ) ) |
| 19 | negeq | ⊢ ( 𝑥 = 𝑧 → - 𝑥 = - 𝑧 ) | |
| 20 | 19 1 15 | fvmpt | ⊢ ( 𝑧 ∈ ℝ → ( 𝐹 ‘ 𝑧 ) = - 𝑧 ) |
| 21 | negeq | ⊢ ( 𝑥 = 𝑦 → - 𝑥 = - 𝑦 ) | |
| 22 | 21 1 16 | fvmpt | ⊢ ( 𝑦 ∈ ℝ → ( 𝐹 ‘ 𝑦 ) = - 𝑦 ) |
| 23 | 20 22 | breqan12d | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ◡ < ( 𝐹 ‘ 𝑦 ) ↔ - 𝑧 ◡ < - 𝑦 ) ) |
| 24 | 18 23 | bitr4d | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ◡ < ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 | 24 | rgen2 | ⊢ ∀ 𝑧 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑧 < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ◡ < ( 𝐹 ‘ 𝑦 ) ) |
| 26 | df-isom | ⊢ ( 𝐹 Isom < , ◡ < ( ℝ , ℝ ) ↔ ( 𝐹 : ℝ –1-1-onto→ ℝ ∧ ∀ 𝑧 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑧 < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ◡ < ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 27 | 13 25 26 | mpbir2an | ⊢ 𝐹 Isom < , ◡ < ( ℝ , ℝ ) |
| 28 | negeq | ⊢ ( 𝑦 = 𝑥 → - 𝑦 = - 𝑥 ) | |
| 29 | 28 | cbvmptv | ⊢ ( 𝑦 ∈ ℝ ↦ - 𝑦 ) = ( 𝑥 ∈ ℝ ↦ - 𝑥 ) |
| 30 | 12 | simpri | ⊢ ◡ 𝐹 = ( 𝑦 ∈ ℝ ↦ - 𝑦 ) |
| 31 | 29 30 1 | 3eqtr4i | ⊢ ◡ 𝐹 = 𝐹 |
| 32 | 27 31 | pm3.2i | ⊢ ( 𝐹 Isom < , ◡ < ( ℝ , ℝ ) ∧ ◡ 𝐹 = 𝐹 ) |