This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a set of reals A is the negative of the supremum of the negatives of its elements. The antecedent ensures that A is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005) (Revised by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infrenegsup | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) = -u sup ( { z e. RR | -u z e. A } , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infrecl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) e. RR ) |
|
| 2 | 1 | recnd | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) e. CC ) |
| 3 | 2 | negnegd | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> -u -u inf ( A , RR , < ) = inf ( A , RR , < ) ) |
| 4 | negeq | |- ( w = z -> -u w = -u z ) |
|
| 5 | 4 | cbvmptv | |- ( w e. RR |-> -u w ) = ( z e. RR |-> -u z ) |
| 6 | 5 | mptpreima | |- ( `' ( w e. RR |-> -u w ) " A ) = { z e. RR | -u z e. A } |
| 7 | eqid | |- ( w e. RR |-> -u w ) = ( w e. RR |-> -u w ) |
|
| 8 | 7 | negiso | |- ( ( w e. RR |-> -u w ) Isom < , `' < ( RR , RR ) /\ `' ( w e. RR |-> -u w ) = ( w e. RR |-> -u w ) ) |
| 9 | 8 | simpri | |- `' ( w e. RR |-> -u w ) = ( w e. RR |-> -u w ) |
| 10 | 9 | imaeq1i | |- ( `' ( w e. RR |-> -u w ) " A ) = ( ( w e. RR |-> -u w ) " A ) |
| 11 | 6 10 | eqtr3i | |- { z e. RR | -u z e. A } = ( ( w e. RR |-> -u w ) " A ) |
| 12 | 11 | supeq1i | |- sup ( { z e. RR | -u z e. A } , RR , < ) = sup ( ( ( w e. RR |-> -u w ) " A ) , RR , < ) |
| 13 | 8 | simpli | |- ( w e. RR |-> -u w ) Isom < , `' < ( RR , RR ) |
| 14 | isocnv | |- ( ( w e. RR |-> -u w ) Isom < , `' < ( RR , RR ) -> `' ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) ) |
|
| 15 | 13 14 | ax-mp | |- `' ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) |
| 16 | isoeq1 | |- ( `' ( w e. RR |-> -u w ) = ( w e. RR |-> -u w ) -> ( `' ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) <-> ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) ) ) |
|
| 17 | 9 16 | ax-mp | |- ( `' ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) <-> ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) ) |
| 18 | 15 17 | mpbi | |- ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) |
| 19 | 18 | a1i | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) ) |
| 20 | simp1 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> A C_ RR ) |
|
| 21 | infm3 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> E. x e. RR ( A. y e. A -. y < x /\ A. y e. RR ( x < y -> E. z e. A z < y ) ) ) |
|
| 22 | vex | |- x e. _V |
|
| 23 | vex | |- y e. _V |
|
| 24 | 22 23 | brcnv | |- ( x `' < y <-> y < x ) |
| 25 | 24 | notbii | |- ( -. x `' < y <-> -. y < x ) |
| 26 | 25 | ralbii | |- ( A. y e. A -. x `' < y <-> A. y e. A -. y < x ) |
| 27 | 23 22 | brcnv | |- ( y `' < x <-> x < y ) |
| 28 | vex | |- z e. _V |
|
| 29 | 23 28 | brcnv | |- ( y `' < z <-> z < y ) |
| 30 | 29 | rexbii | |- ( E. z e. A y `' < z <-> E. z e. A z < y ) |
| 31 | 27 30 | imbi12i | |- ( ( y `' < x -> E. z e. A y `' < z ) <-> ( x < y -> E. z e. A z < y ) ) |
| 32 | 31 | ralbii | |- ( A. y e. RR ( y `' < x -> E. z e. A y `' < z ) <-> A. y e. RR ( x < y -> E. z e. A z < y ) ) |
| 33 | 26 32 | anbi12i | |- ( ( A. y e. A -. x `' < y /\ A. y e. RR ( y `' < x -> E. z e. A y `' < z ) ) <-> ( A. y e. A -. y < x /\ A. y e. RR ( x < y -> E. z e. A z < y ) ) ) |
| 34 | 33 | rexbii | |- ( E. x e. RR ( A. y e. A -. x `' < y /\ A. y e. RR ( y `' < x -> E. z e. A y `' < z ) ) <-> E. x e. RR ( A. y e. A -. y < x /\ A. y e. RR ( x < y -> E. z e. A z < y ) ) ) |
| 35 | 21 34 | sylibr | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> E. x e. RR ( A. y e. A -. x `' < y /\ A. y e. RR ( y `' < x -> E. z e. A y `' < z ) ) ) |
| 36 | gtso | |- `' < Or RR |
|
| 37 | 36 | a1i | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> `' < Or RR ) |
| 38 | 19 20 35 37 | supiso | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> sup ( ( ( w e. RR |-> -u w ) " A ) , RR , < ) = ( ( w e. RR |-> -u w ) ` sup ( A , RR , `' < ) ) ) |
| 39 | 12 38 | eqtrid | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> sup ( { z e. RR | -u z e. A } , RR , < ) = ( ( w e. RR |-> -u w ) ` sup ( A , RR , `' < ) ) ) |
| 40 | df-inf | |- inf ( A , RR , < ) = sup ( A , RR , `' < ) |
|
| 41 | 40 | eqcomi | |- sup ( A , RR , `' < ) = inf ( A , RR , < ) |
| 42 | 41 | fveq2i | |- ( ( w e. RR |-> -u w ) ` sup ( A , RR , `' < ) ) = ( ( w e. RR |-> -u w ) ` inf ( A , RR , < ) ) |
| 43 | negeq | |- ( w = inf ( A , RR , < ) -> -u w = -u inf ( A , RR , < ) ) |
|
| 44 | negex | |- -u inf ( A , RR , < ) e. _V |
|
| 45 | 43 7 44 | fvmpt | |- ( inf ( A , RR , < ) e. RR -> ( ( w e. RR |-> -u w ) ` inf ( A , RR , < ) ) = -u inf ( A , RR , < ) ) |
| 46 | 42 45 | eqtrid | |- ( inf ( A , RR , < ) e. RR -> ( ( w e. RR |-> -u w ) ` sup ( A , RR , `' < ) ) = -u inf ( A , RR , < ) ) |
| 47 | 1 46 | syl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> ( ( w e. RR |-> -u w ) ` sup ( A , RR , `' < ) ) = -u inf ( A , RR , < ) ) |
| 48 | 39 47 | eqtr2d | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> -u inf ( A , RR , < ) = sup ( { z e. RR | -u z e. A } , RR , < ) ) |
| 49 | 48 | negeqd | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> -u -u inf ( A , RR , < ) = -u sup ( { z e. RR | -u z e. A } , RR , < ) ) |
| 50 | 3 49 | eqtr3d | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) = -u sup ( { z e. RR | -u z e. A } , RR , < ) ) |