This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two filters is a filter. Use fiint to extend this property to the intersection of a finite set of filters. Paragraph 3 of BourbakiTop1 p. I.36. (Contributed by FL, 17-Sep-2007) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infil | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐹 ∩ 𝐺 ) ∈ ( Fil ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( 𝐹 ∩ 𝐺 ) ⊆ 𝐹 | |
| 2 | filsspw | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 4 | 1 3 | sstrid | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐹 ∩ 𝐺 ) ⊆ 𝒫 𝑋 ) |
| 5 | 0nelfil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ¬ ∅ ∈ 𝐹 ) |
| 7 | elinel1 | ⊢ ( ∅ ∈ ( 𝐹 ∩ 𝐺 ) → ∅ ∈ 𝐹 ) | |
| 8 | 6 7 | nsyl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ¬ ∅ ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 9 | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝑋 ∈ 𝐹 ) |
| 11 | filtop | ⊢ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐺 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝑋 ∈ 𝐺 ) |
| 13 | 10 12 | elind | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝑋 ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 14 | 4 8 13 | 3jca | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( ( 𝐹 ∩ 𝐺 ) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑋 ∈ ( 𝐹 ∩ 𝐺 ) ) ) |
| 15 | simpll | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 16 | simpr2 | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) | |
| 17 | elinel1 | ⊢ ( 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) → 𝑦 ∈ 𝐹 ) | |
| 18 | 16 17 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ 𝐹 ) |
| 19 | simpr1 | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝒫 𝑋 ) | |
| 20 | 19 | elpwid | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ⊆ 𝑋 ) |
| 21 | simpr3 | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ⊆ 𝑥 ) | |
| 22 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐹 ) | |
| 23 | 15 18 20 21 22 | syl13anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐹 ) |
| 24 | simplr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) | |
| 25 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) → 𝑦 ∈ 𝐺 ) | |
| 26 | 16 25 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ 𝐺 ) |
| 27 | filss | ⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐺 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐺 ) | |
| 28 | 24 26 20 21 27 | syl13anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐺 ) |
| 29 | 23 28 | elind | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 30 | 29 | 3exp2 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ 𝒫 𝑋 → ( 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) ) ) ) |
| 31 | 30 | imp | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) ) ) |
| 32 | 31 | rexlimdv | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( ∃ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) ) |
| 34 | simpl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 35 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) → 𝑥 ∈ 𝐹 ) | |
| 36 | 35 17 | anim12i | ⊢ ( ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) → ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) |
| 37 | filin | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) | |
| 38 | 37 | 3expb | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 39 | 34 36 38 | syl2an | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 40 | simpr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) | |
| 41 | elinel2 | ⊢ ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) → 𝑥 ∈ 𝐺 ) | |
| 42 | 41 25 | anim12i | ⊢ ( ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) → ( 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) ) |
| 43 | filin | ⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐺 ) | |
| 44 | 43 | 3expb | ⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐺 ) |
| 45 | 40 42 44 | syl2an | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐺 ) |
| 46 | 39 45 | elind | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 47 | 46 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ∀ 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 48 | isfil2 | ⊢ ( ( 𝐹 ∩ 𝐺 ) ∈ ( Fil ‘ 𝑋 ) ↔ ( ( ( 𝐹 ∩ 𝐺 ) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑋 ∈ ( 𝐹 ∩ 𝐺 ) ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∩ 𝐺 ) ) ) | |
| 49 | 14 33 47 48 | syl3anbrc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐹 ∩ 𝐺 ) ∈ ( Fil ‘ 𝑋 ) ) |