This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive the standard axioms of a filter. (Contributed by Mario Carneiro, 27-Nov-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfil2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filsspw | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) | |
| 2 | 0nelfil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) | |
| 3 | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) | |
| 4 | 1 2 3 | 3jca | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ) |
| 5 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) | |
| 6 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐹 ) | |
| 7 | 6 | 3exp2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑦 ∈ 𝐹 → ( 𝑥 ⊆ 𝑋 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| 8 | 7 | com23 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 → ( 𝑦 ∈ 𝐹 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑦 ∈ 𝐹 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 10 | 9 | rexlimdv | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 11 | 5 10 | sylan2 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 13 | filin | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) | |
| 14 | 13 | 3expb | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 15 | 14 | ralrimivva | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 16 | 4 12 15 | 3jca | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) ) |
| 17 | simp11 | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → 𝐹 ⊆ 𝒫 𝑋 ) | |
| 18 | simp13 | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → 𝑋 ∈ 𝐹 ) | |
| 19 | 18 | ne0d | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → 𝐹 ≠ ∅ ) |
| 20 | simp12 | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ¬ ∅ ∈ 𝐹 ) | |
| 21 | df-nel | ⊢ ( ∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹 ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ∅ ∉ 𝐹 ) |
| 23 | ssid | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) | |
| 24 | sseq1 | ⊢ ( 𝑧 = ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 25 | 24 | rspcev | ⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 26 | 23 25 | mpan2 | ⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 27 | 26 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 → ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 28 | 27 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 29 | 28 | 3ad2ant3 | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 30 | 19 22 29 | 3jca | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 31 | isfbas2 | ⊢ ( 𝑋 ∈ 𝐹 → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) | |
| 32 | 18 31 | syl | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 33 | 17 30 32 | mpbir2and | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 34 | n0 | ⊢ ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) ) | |
| 35 | elin | ⊢ ( 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) ↔ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ∈ 𝒫 𝑥 ) ) | |
| 36 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝑥 → 𝑦 ⊆ 𝑥 ) | |
| 37 | 36 | anim2i | ⊢ ( ( 𝑦 ∈ 𝐹 ∧ 𝑦 ∈ 𝒫 𝑥 ) → ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) |
| 38 | 35 37 | sylbi | ⊢ ( 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) → ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) |
| 39 | 38 | eximi | ⊢ ( ∃ 𝑦 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) |
| 40 | 34 39 | sylbi | ⊢ ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) |
| 41 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) | |
| 42 | 40 41 | sylibr | ⊢ ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 ) |
| 43 | 42 | imim1i | ⊢ ( ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) → ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
| 44 | 43 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
| 45 | 44 | 3ad2ant2 | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
| 46 | isfil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) ) | |
| 47 | 33 45 46 | sylanbrc | ⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 48 | 16 47 | impbii | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) ) |