This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An image of a full functor is a full subcategory. Remark 4.2(3) of Adamek p. 48. (Contributed by Zhi Wang, 7-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasubc.s | ⊢ 𝑆 = ( 𝐹 “ 𝐴 ) | |
| imasubc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| imasubc.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) | ||
| imasubc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 ) | ||
| imasubc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| imasubc.j | ⊢ 𝐽 = ( Homf ‘ 𝐸 ) | ||
| Assertion | imasubc | ⊢ ( 𝜑 → ( 𝐾 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ⊆ 𝐶 ∧ ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubc.s | ⊢ 𝑆 = ( 𝐹 “ 𝐴 ) | |
| 2 | imasubc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 3 | imasubc.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) | |
| 4 | imasubc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 ) | |
| 5 | imasubc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 6 | imasubc.j | ⊢ 𝐽 = ( Homf ‘ 𝐸 ) | |
| 7 | relfull | ⊢ Rel ( 𝐷 Full 𝐸 ) | |
| 8 | 7 | brrelex1i | ⊢ ( 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 → 𝐹 ∈ V ) |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 10 | 9 9 3 | imasubclem2 | ⊢ ( 𝜑 → 𝐾 Fn ( 𝑆 × 𝑆 ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 12 | fullfunc | ⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) | |
| 13 | 12 | ssbri | ⊢ ( 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 14 | 4 13 | syl | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 15 | 11 5 14 | funcf1 | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐷 ) ⟶ 𝐶 ) |
| 16 | 15 | fimassd | ⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ⊆ 𝐶 ) |
| 17 | 1 16 | eqsstrid | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐶 ) |
| 18 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) | |
| 19 | 18 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑧 ∈ ( 𝐹 “ 𝐴 ) ) |
| 20 | inisegn0a | ⊢ ( 𝑧 ∈ ( 𝐹 “ 𝐴 ) → ( ◡ 𝐹 “ { 𝑧 } ) ≠ ∅ ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ◡ 𝐹 “ { 𝑧 } ) ≠ ∅ ) |
| 22 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑤 ∈ 𝑆 ) | |
| 23 | 22 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑤 ∈ ( 𝐹 “ 𝐴 ) ) |
| 24 | inisegn0a | ⊢ ( 𝑤 ∈ ( 𝐹 “ 𝐴 ) → ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) |
| 26 | 21 25 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 “ { 𝑧 } ) ≠ ∅ ∧ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) ) |
| 27 | xpnz | ⊢ ( ( ( ◡ 𝐹 “ { 𝑧 } ) ≠ ∅ ∧ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) ↔ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ≠ ∅ ) | |
| 28 | 26 27 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ≠ ∅ ) |
| 29 | 15 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐷 ) ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝐹 Fn ( Base ‘ 𝐷 ) ) |
| 31 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) | |
| 32 | fniniseg | ⊢ ( 𝐹 Fn ( Base ‘ 𝐷 ) → ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↔ ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑧 ) ) ) | |
| 33 | 32 | biimpa | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝐷 ) ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) → ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑧 ) ) |
| 34 | 30 31 33 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑧 ) ) |
| 35 | 34 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝐹 ‘ 𝑚 ) = 𝑧 ) |
| 36 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) | |
| 37 | fniniseg | ⊢ ( 𝐹 Fn ( Base ‘ 𝐷 ) → ( 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ↔ ( 𝑛 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑤 ) ) ) | |
| 38 | 37 | biimpa | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝐷 ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) → ( 𝑛 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑤 ) ) |
| 39 | 30 36 38 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑛 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑤 ) ) |
| 40 | 39 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝐹 ‘ 𝑛 ) = 𝑤 ) |
| 41 | 35 40 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 42 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 43 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 ) |
| 44 | 34 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑚 ∈ ( Base ‘ 𝐷 ) ) |
| 45 | 39 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑛 ∈ ( Base ‘ 𝐷 ) ) |
| 46 | 11 42 2 43 44 45 | fullfo | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 47 | foeq3 | ⊢ ( ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) → ( ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) ↔ ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) ) | |
| 48 | 47 | biimpa | ⊢ ( ( ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ∧ ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 49 | 41 46 48 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 50 | foima | ⊢ ( ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) → ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) | |
| 51 | 49 50 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 52 | 51 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ∀ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∀ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 53 | fveq2 | ⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 〈 𝑚 , 𝑛 〉 ) ) | |
| 54 | df-ov | ⊢ ( 𝑚 𝐺 𝑛 ) = ( 𝐺 ‘ 〈 𝑚 , 𝑛 〉 ) | |
| 55 | 53 54 | eqtr4di | ⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐺 ‘ 𝑝 ) = ( 𝑚 𝐺 𝑛 ) ) |
| 56 | fveq2 | ⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐻 ‘ 𝑝 ) = ( 𝐻 ‘ 〈 𝑚 , 𝑛 〉 ) ) | |
| 57 | df-ov | ⊢ ( 𝑚 𝐻 𝑛 ) = ( 𝐻 ‘ 〈 𝑚 , 𝑛 〉 ) | |
| 58 | 56 57 | eqtr4di | ⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐻 ‘ 𝑝 ) = ( 𝑚 𝐻 𝑛 ) ) |
| 59 | 55 58 | imaeq12d | ⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) ) |
| 60 | 59 | eqeq1d | ⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ↔ ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) ) |
| 61 | 60 | ralxp | ⊢ ( ∀ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ↔ ∀ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∀ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 62 | 52 61 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ∀ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 63 | iuneqconst2 | ⊢ ( ( ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ≠ ∅ ∧ ∀ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) → ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) | |
| 64 | 28 62 63 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 65 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝐹 ∈ V ) |
| 66 | 65 65 18 22 3 | imasubclem3 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑧 𝐾 𝑤 ) = ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 67 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑆 ⊆ 𝐶 ) |
| 68 | 67 18 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑧 ∈ 𝐶 ) |
| 69 | 67 22 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑤 ∈ 𝐶 ) |
| 70 | 6 5 42 68 69 | homfval | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑧 𝐽 𝑤 ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 71 | 64 66 70 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) |
| 72 | 71 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) |
| 73 | fveq2 | ⊢ ( 𝑞 = 〈 𝑧 , 𝑤 〉 → ( 𝐽 ‘ 𝑞 ) = ( 𝐽 ‘ 〈 𝑧 , 𝑤 〉 ) ) | |
| 74 | df-ov | ⊢ ( 𝑧 𝐽 𝑤 ) = ( 𝐽 ‘ 〈 𝑧 , 𝑤 〉 ) | |
| 75 | 73 74 | eqtr4di | ⊢ ( 𝑞 = 〈 𝑧 , 𝑤 〉 → ( 𝐽 ‘ 𝑞 ) = ( 𝑧 𝐽 𝑤 ) ) |
| 76 | fveq2 | ⊢ ( 𝑞 = 〈 𝑧 , 𝑤 〉 → ( 𝐾 ‘ 𝑞 ) = ( 𝐾 ‘ 〈 𝑧 , 𝑤 〉 ) ) | |
| 77 | df-ov | ⊢ ( 𝑧 𝐾 𝑤 ) = ( 𝐾 ‘ 〈 𝑧 , 𝑤 〉 ) | |
| 78 | 76 77 | eqtr4di | ⊢ ( 𝑞 = 〈 𝑧 , 𝑤 〉 → ( 𝐾 ‘ 𝑞 ) = ( 𝑧 𝐾 𝑤 ) ) |
| 79 | 75 78 | eqeq12d | ⊢ ( 𝑞 = 〈 𝑧 , 𝑤 〉 → ( ( 𝐽 ‘ 𝑞 ) = ( 𝐾 ‘ 𝑞 ) ↔ ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
| 80 | 79 | ralxp | ⊢ ( ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽 ‘ 𝑞 ) = ( 𝐾 ‘ 𝑞 ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) |
| 81 | 72 80 | sylibr | ⊢ ( 𝜑 → ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽 ‘ 𝑞 ) = ( 𝐾 ‘ 𝑞 ) ) |
| 82 | 6 5 | homffn | ⊢ 𝐽 Fn ( 𝐶 × 𝐶 ) |
| 83 | 82 | a1i | ⊢ ( 𝜑 → 𝐽 Fn ( 𝐶 × 𝐶 ) ) |
| 84 | xpss12 | ⊢ ( ( 𝑆 ⊆ 𝐶 ∧ 𝑆 ⊆ 𝐶 ) → ( 𝑆 × 𝑆 ) ⊆ ( 𝐶 × 𝐶 ) ) | |
| 85 | 17 17 84 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ⊆ ( 𝐶 × 𝐶 ) ) |
| 86 | fvreseq1 | ⊢ ( ( ( 𝐽 Fn ( 𝐶 × 𝐶 ) ∧ 𝐾 Fn ( 𝑆 × 𝑆 ) ) ∧ ( 𝑆 × 𝑆 ) ⊆ ( 𝐶 × 𝐶 ) ) → ( ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ↔ ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽 ‘ 𝑞 ) = ( 𝐾 ‘ 𝑞 ) ) ) | |
| 87 | 83 10 85 86 | syl21anc | ⊢ ( 𝜑 → ( ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ↔ ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽 ‘ 𝑞 ) = ( 𝐾 ‘ 𝑞 ) ) ) |
| 88 | 81 87 | mpbird | ⊢ ( 𝜑 → ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ) |
| 89 | 10 17 88 | 3jca | ⊢ ( 𝜑 → ( 𝐾 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ⊆ 𝐶 ∧ ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ) ) |