This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An image of a full functor is a full subcategory. Remark 4.2(3) of Adamek p. 48. (Contributed by Zhi Wang, 7-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasubc.s | |- S = ( F " A ) |
|
| imasubc.h | |- H = ( Hom ` D ) |
||
| imasubc.k | |- K = ( x e. S , y e. S |-> U_ p e. ( ( `' F " { x } ) X. ( `' F " { y } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
||
| imasubc.f | |- ( ph -> F ( D Full E ) G ) |
||
| imasubc.c | |- C = ( Base ` E ) |
||
| imasubc.j | |- J = ( Homf ` E ) |
||
| Assertion | imasubc | |- ( ph -> ( K Fn ( S X. S ) /\ S C_ C /\ ( J |` ( S X. S ) ) = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubc.s | |- S = ( F " A ) |
|
| 2 | imasubc.h | |- H = ( Hom ` D ) |
|
| 3 | imasubc.k | |- K = ( x e. S , y e. S |-> U_ p e. ( ( `' F " { x } ) X. ( `' F " { y } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
|
| 4 | imasubc.f | |- ( ph -> F ( D Full E ) G ) |
|
| 5 | imasubc.c | |- C = ( Base ` E ) |
|
| 6 | imasubc.j | |- J = ( Homf ` E ) |
|
| 7 | relfull | |- Rel ( D Full E ) |
|
| 8 | 7 | brrelex1i | |- ( F ( D Full E ) G -> F e. _V ) |
| 9 | 4 8 | syl | |- ( ph -> F e. _V ) |
| 10 | 9 9 3 | imasubclem2 | |- ( ph -> K Fn ( S X. S ) ) |
| 11 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 12 | fullfunc | |- ( D Full E ) C_ ( D Func E ) |
|
| 13 | 12 | ssbri | |- ( F ( D Full E ) G -> F ( D Func E ) G ) |
| 14 | 4 13 | syl | |- ( ph -> F ( D Func E ) G ) |
| 15 | 11 5 14 | funcf1 | |- ( ph -> F : ( Base ` D ) --> C ) |
| 16 | 15 | fimassd | |- ( ph -> ( F " A ) C_ C ) |
| 17 | 1 16 | eqsstrid | |- ( ph -> S C_ C ) |
| 18 | simprl | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> z e. S ) |
|
| 19 | 18 1 | eleqtrdi | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> z e. ( F " A ) ) |
| 20 | inisegn0a | |- ( z e. ( F " A ) -> ( `' F " { z } ) =/= (/) ) |
|
| 21 | 19 20 | syl | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( `' F " { z } ) =/= (/) ) |
| 22 | simprr | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> w e. S ) |
|
| 23 | 22 1 | eleqtrdi | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> w e. ( F " A ) ) |
| 24 | inisegn0a | |- ( w e. ( F " A ) -> ( `' F " { w } ) =/= (/) ) |
|
| 25 | 23 24 | syl | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( `' F " { w } ) =/= (/) ) |
| 26 | 21 25 | jca | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( `' F " { z } ) =/= (/) /\ ( `' F " { w } ) =/= (/) ) ) |
| 27 | xpnz | |- ( ( ( `' F " { z } ) =/= (/) /\ ( `' F " { w } ) =/= (/) ) <-> ( ( `' F " { z } ) X. ( `' F " { w } ) ) =/= (/) ) |
|
| 28 | 26 27 | sylib | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( `' F " { z } ) X. ( `' F " { w } ) ) =/= (/) ) |
| 29 | 15 | ffnd | |- ( ph -> F Fn ( Base ` D ) ) |
| 30 | 29 | ad2antrr | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> F Fn ( Base ` D ) ) |
| 31 | simprl | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> m e. ( `' F " { z } ) ) |
|
| 32 | fniniseg | |- ( F Fn ( Base ` D ) -> ( m e. ( `' F " { z } ) <-> ( m e. ( Base ` D ) /\ ( F ` m ) = z ) ) ) |
|
| 33 | 32 | biimpa | |- ( ( F Fn ( Base ` D ) /\ m e. ( `' F " { z } ) ) -> ( m e. ( Base ` D ) /\ ( F ` m ) = z ) ) |
| 34 | 30 31 33 | syl2anc | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( m e. ( Base ` D ) /\ ( F ` m ) = z ) ) |
| 35 | 34 | simprd | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( F ` m ) = z ) |
| 36 | simprr | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> n e. ( `' F " { w } ) ) |
|
| 37 | fniniseg | |- ( F Fn ( Base ` D ) -> ( n e. ( `' F " { w } ) <-> ( n e. ( Base ` D ) /\ ( F ` n ) = w ) ) ) |
|
| 38 | 37 | biimpa | |- ( ( F Fn ( Base ` D ) /\ n e. ( `' F " { w } ) ) -> ( n e. ( Base ` D ) /\ ( F ` n ) = w ) ) |
| 39 | 30 36 38 | syl2anc | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( n e. ( Base ` D ) /\ ( F ` n ) = w ) ) |
| 40 | 39 | simprd | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( F ` n ) = w ) |
| 41 | 35 40 | oveq12d | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) = ( z ( Hom ` E ) w ) ) |
| 42 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 43 | 4 | ad2antrr | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> F ( D Full E ) G ) |
| 44 | 34 | simpld | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> m e. ( Base ` D ) ) |
| 45 | 39 | simpld | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> n e. ( Base ` D ) ) |
| 46 | 11 42 2 43 44 45 | fullfo | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( m G n ) : ( m H n ) -onto-> ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) ) |
| 47 | foeq3 | |- ( ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) = ( z ( Hom ` E ) w ) -> ( ( m G n ) : ( m H n ) -onto-> ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) <-> ( m G n ) : ( m H n ) -onto-> ( z ( Hom ` E ) w ) ) ) |
|
| 48 | 47 | biimpa | |- ( ( ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) = ( z ( Hom ` E ) w ) /\ ( m G n ) : ( m H n ) -onto-> ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) ) -> ( m G n ) : ( m H n ) -onto-> ( z ( Hom ` E ) w ) ) |
| 49 | 41 46 48 | syl2anc | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( m G n ) : ( m H n ) -onto-> ( z ( Hom ` E ) w ) ) |
| 50 | foima | |- ( ( m G n ) : ( m H n ) -onto-> ( z ( Hom ` E ) w ) -> ( ( m G n ) " ( m H n ) ) = ( z ( Hom ` E ) w ) ) |
|
| 51 | 49 50 | syl | |- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( ( m G n ) " ( m H n ) ) = ( z ( Hom ` E ) w ) ) |
| 52 | 51 | ralrimivva | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> A. m e. ( `' F " { z } ) A. n e. ( `' F " { w } ) ( ( m G n ) " ( m H n ) ) = ( z ( Hom ` E ) w ) ) |
| 53 | fveq2 | |- ( p = <. m , n >. -> ( G ` p ) = ( G ` <. m , n >. ) ) |
|
| 54 | df-ov | |- ( m G n ) = ( G ` <. m , n >. ) |
|
| 55 | 53 54 | eqtr4di | |- ( p = <. m , n >. -> ( G ` p ) = ( m G n ) ) |
| 56 | fveq2 | |- ( p = <. m , n >. -> ( H ` p ) = ( H ` <. m , n >. ) ) |
|
| 57 | df-ov | |- ( m H n ) = ( H ` <. m , n >. ) |
|
| 58 | 56 57 | eqtr4di | |- ( p = <. m , n >. -> ( H ` p ) = ( m H n ) ) |
| 59 | 55 58 | imaeq12d | |- ( p = <. m , n >. -> ( ( G ` p ) " ( H ` p ) ) = ( ( m G n ) " ( m H n ) ) ) |
| 60 | 59 | eqeq1d | |- ( p = <. m , n >. -> ( ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) <-> ( ( m G n ) " ( m H n ) ) = ( z ( Hom ` E ) w ) ) ) |
| 61 | 60 | ralxp | |- ( A. p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) <-> A. m e. ( `' F " { z } ) A. n e. ( `' F " { w } ) ( ( m G n ) " ( m H n ) ) = ( z ( Hom ` E ) w ) ) |
| 62 | 52 61 | sylibr | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> A. p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) ) |
| 63 | iuneqconst2 | |- ( ( ( ( `' F " { z } ) X. ( `' F " { w } ) ) =/= (/) /\ A. p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) ) -> U_ p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) ) |
|
| 64 | 28 62 63 | syl2anc | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> U_ p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) ) |
| 65 | 9 | adantr | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> F e. _V ) |
| 66 | 65 65 18 22 3 | imasubclem3 | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z K w ) = U_ p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 67 | 17 | adantr | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> S C_ C ) |
| 68 | 67 18 | sseldd | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> z e. C ) |
| 69 | 67 22 | sseldd | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> w e. C ) |
| 70 | 6 5 42 68 69 | homfval | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z J w ) = ( z ( Hom ` E ) w ) ) |
| 71 | 64 66 70 | 3eqtr4rd | |- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z J w ) = ( z K w ) ) |
| 72 | 71 | ralrimivva | |- ( ph -> A. z e. S A. w e. S ( z J w ) = ( z K w ) ) |
| 73 | fveq2 | |- ( q = <. z , w >. -> ( J ` q ) = ( J ` <. z , w >. ) ) |
|
| 74 | df-ov | |- ( z J w ) = ( J ` <. z , w >. ) |
|
| 75 | 73 74 | eqtr4di | |- ( q = <. z , w >. -> ( J ` q ) = ( z J w ) ) |
| 76 | fveq2 | |- ( q = <. z , w >. -> ( K ` q ) = ( K ` <. z , w >. ) ) |
|
| 77 | df-ov | |- ( z K w ) = ( K ` <. z , w >. ) |
|
| 78 | 76 77 | eqtr4di | |- ( q = <. z , w >. -> ( K ` q ) = ( z K w ) ) |
| 79 | 75 78 | eqeq12d | |- ( q = <. z , w >. -> ( ( J ` q ) = ( K ` q ) <-> ( z J w ) = ( z K w ) ) ) |
| 80 | 79 | ralxp | |- ( A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) <-> A. z e. S A. w e. S ( z J w ) = ( z K w ) ) |
| 81 | 72 80 | sylibr | |- ( ph -> A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) ) |
| 82 | 6 5 | homffn | |- J Fn ( C X. C ) |
| 83 | 82 | a1i | |- ( ph -> J Fn ( C X. C ) ) |
| 84 | xpss12 | |- ( ( S C_ C /\ S C_ C ) -> ( S X. S ) C_ ( C X. C ) ) |
|
| 85 | 17 17 84 | syl2anc | |- ( ph -> ( S X. S ) C_ ( C X. C ) ) |
| 86 | fvreseq1 | |- ( ( ( J Fn ( C X. C ) /\ K Fn ( S X. S ) ) /\ ( S X. S ) C_ ( C X. C ) ) -> ( ( J |` ( S X. S ) ) = K <-> A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) ) ) |
|
| 87 | 83 10 85 86 | syl21anc | |- ( ph -> ( ( J |` ( S X. S ) ) = K <-> A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) ) ) |
| 88 | 81 87 | mpbird | |- ( ph -> ( J |` ( S X. S ) ) = K ) |
| 89 | 10 17 88 | 3jca | |- ( ph -> ( K Fn ( S X. S ) /\ S C_ C /\ ( J |` ( S X. S ) ) = K ) ) |