This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for imasubc . (Contributed by Zhi Wang, 7-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasubclem1.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| imasubclem1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| imasubclem2.k | ⊢ 𝐾 = ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑌 ↦ ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) | ||
| Assertion | imasubclem2 | ⊢ ( 𝜑 → 𝐾 Fn ( 𝑋 × 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem1.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | imasubclem1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 3 | imasubclem2.k | ⊢ 𝐾 = ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑌 ↦ ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) | |
| 4 | 1 2 | imasubclem1 | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |
| 5 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ) → ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |
| 6 | 5 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑌 ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |
| 7 | 3 | fnmpo | ⊢ ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑌 ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V → 𝐾 Fn ( 𝑋 × 𝑌 ) ) |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → 𝐾 Fn ( 𝑋 × 𝑌 ) ) |