This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed union of identical classes. (Contributed by Zhi Wang, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iuneqconst2 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss | ⊢ ( 𝐵 = 𝐶 → 𝐵 ⊆ 𝐶 ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 4 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 6 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) | |
| 7 | eqimss2 | ⊢ ( 𝐵 = 𝐶 → 𝐶 ⊆ 𝐵 ) | |
| 8 | 7 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∃ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) |
| 9 | ssiun | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 10 | 6 8 9 | 3syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 11 | 5 10 | eqssd | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |