This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for imasubc . (Contributed by Zhi Wang, 7-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasubclem1.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| imasubclem1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| imasubclem3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| imasubclem3.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| imasubclem3.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐺 “ { 𝑦 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) | ||
| Assertion | imasubclem3 | ⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem1.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | imasubclem1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 3 | imasubclem3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 4 | imasubclem3.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | imasubclem3.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐺 “ { 𝑦 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) | |
| 6 | 1 2 | imasubclem1 | ⊢ ( 𝜑 → ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |
| 7 | simpl | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑥 = 𝑋 ) | |
| 8 | 7 | sneqd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑥 } = { 𝑋 } ) |
| 9 | 8 | imaeq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ 𝐹 “ { 𝑋 } ) ) |
| 10 | simpr | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) | |
| 11 | 10 | sneqd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑦 } = { 𝑌 } ) |
| 12 | 11 | imaeq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( ◡ 𝐺 “ { 𝑌 } ) ) |
| 13 | 9 12 | xpeq12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐺 “ { 𝑦 } ) ) = ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ) |
| 14 | 13 | iuneq1d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐺 “ { 𝑦 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) = ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) |
| 15 | 14 5 | ovmpoga | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) → ( 𝑋 𝐾 𝑌 ) = ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) |
| 16 | 3 4 6 15 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) |