This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An image of a full functor is a (full) subcategory. Remark 4.2(3) of Adamek p. 48. (Contributed by Zhi Wang, 7-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasubc.s | ⊢ 𝑆 = ( 𝐹 “ 𝐴 ) | |
| imasubc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| imasubc.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) | ||
| imasubc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 ) | ||
| Assertion | imasubc2 | ⊢ ( 𝜑 → 𝐾 ∈ ( Subcat ‘ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubc.s | ⊢ 𝑆 = ( 𝐹 “ 𝐴 ) | |
| 2 | imasubc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 3 | imasubc.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) | |
| 4 | imasubc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 6 | eqid | ⊢ ( Homf ‘ 𝐸 ) = ( Homf ‘ 𝐸 ) | |
| 7 | 1 2 3 4 5 6 | imasubc | ⊢ ( 𝜑 → ( 𝐾 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐸 ) ∧ ( ( Homf ‘ 𝐸 ) ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ) ) |
| 8 | 7 | simp3d | ⊢ ( 𝜑 → ( ( Homf ‘ 𝐸 ) ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ) |
| 9 | fullfunc | ⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) | |
| 10 | 9 | ssbri | ⊢ ( 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 12 | 11 | funcrcl3 | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 13 | 7 | simp2d | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐸 ) ) |
| 14 | 5 6 12 13 | fullsubc | ⊢ ( 𝜑 → ( ( Homf ‘ 𝐸 ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( Subcat ‘ 𝐸 ) ) |
| 15 | 8 14 | eqeltrrd | ⊢ ( 𝜑 → 𝐾 ∈ ( Subcat ‘ 𝐸 ) ) |